4.6 Review

SHS-Derived Powders by Reactions' Coupling as Primary Products for Subsequent Consolidation

Journal

MATERIALS
Volume 14, Issue 17, Pages -

Publisher

MDPI
DOI: 10.3390/ma14175117

Keywords

self-propagating high-temperature synthesis; combustion synthesized powder; thermal coupling; sintering; microstructure; mechanical properties

Funding

  1. Estonian Research Council, Estonia [PSG220, PRG643]

Ask authors/readers for more resources

This study investigates the use of self-propagating high-temperature synthesis (SHS) for the production of composites in powder metallurgy techniques. The effects of SHS synthesis and sintering on the Me'O-3(WO3,MoO3)-Me''O(CuO,NiO)-Mg-C, Ti-B-Al12Mg17 systems are compared in detail. It is shown that by optimizing the structure and parameters of SHS powders and controlling the thermodynamic requirements during combustion, the sintering efficiency of materials can be significantly improved.
The capability of self-propagating high-temperature synthesis (SHS) to produce powders that are characterized by a high sintering ability, owing to high heating and cooling rates inherent to the exothermic reaction, is of a special interest for the industry. In particular, SHS-derived powders comprise a significant defect concentration in order to effectively enhance the mass transfer processes during the sintering, which allows for the successful consolidation of difficult-to-sinter materials at relatively low sintering temperatures. From this perspective, the design of precursors suitable for sintering, synthesis in a controlled temperature regime and the optimization of geometrical and structural parameters of SHS powders as a potential feedstock for the consolidation is of key importance. Here, we report on the comparative studies concerning the SHS processing of composites for advanced powder metallurgy techniques. The synthesis and sintering peculiarities of the SHS through coupled reactions in the Me'O-3(WO3,MoO3)-Me''O(CuO,NiO)-Mg-C, Ti-B-Al12Mg17 systems are comparatively reviewed. The SHS coupling approach was used for the preparation of powders with a tuned degree of fineness (a high specific surface area of particles), a high-homogeneity and a controllable distribution of elements via both the regulation of the thermal regime of combustion in a wide range and the matching of the thermal and kinetic requirements of two interconnected reactions. Microstructural features of the powder feedstock greatly contributed to the subsequent consolidation process.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available