4.6 Article

In Situ Formation of Laser-Cladded Layer on Thin-Walled Tube of Aluminum Alloy in Underwater Environment

Journal

MATERIALS
Volume 14, Issue 16, Pages -

Publisher

MDPI
DOI: 10.3390/ma14164729

Keywords

underwater laser cladding; thin-walled tube; aluminum alloy; microstructure and microhardness

Ask authors/readers for more resources

The study investigated the influence of water environment on the laser melting process and properties of thin-walled aluminum-alloy tubes. It was found that although the uniformity of the cladding layer decreased in underwater environment, good metallurgical bonding was still achieved, and the grain size was smaller.
The first study of thin-walled aluminum-alloy tubes with underwater-laser-nozzle in situ melting technology was carried out. The study mainly covered the influence of the water environment on the laser melting process, melting appearance, geometric characteristics, microstructure, regional segregation and microhardness. During the transfer of the cladding environment from air to water, the uniformity of the cladding layer became poor, but excellent metallurgical bonding was still obtained. The dilution rate (D) decreased from 0.46 to 0.33, while the shape factor (S) increased from 4.38 to 5.98. For the in-air and underwater samples, the microstructure of the melting zone (MZ) and the cladding zone (CZ) were columnar dendrites and equiaxed grains, respectively. In addition, the microstructure of the overlapping zone (OZ) was composed of columnar dendrites and equiaxed grains. The underwater average grain size was smaller than that of in-air. In addition, the water environment was beneficial for reducing the positive segregation in the columnar dendrite region. Compared with the in-air cladding sample, the precipitated phases in the OZ of the underwater cladding sample reduced. Under the combined action of grain refinement and precipitated phase reduction, the microhardness value of the underwater OZ was higher than that of the in-air OZ.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available