4.6 Article

Assessment of the Impact of Decellularization Methods on Mechanical Properties of Biocomposites Used as Skin Substitute

Journal

MATERIALS
Volume 14, Issue 17, Pages -

Publisher

MDPI
DOI: 10.3390/ma14174785

Keywords

decellularization; skin substitute; mechanical properties

Ask authors/readers for more resources

This study assessed the impact of acellularization and sterilization methods on the mechanical properties of biocomposites used as a skin substitute. Different methods were found to alter the mechanical properties of allogeneic skins. The authors recommend specific methods for preparing skin substitutes.
This work aimed to assess the impact of acellularization and sterilization methods on the mechanical properties of biocomposites used as a skin substitute. On the basis of the statistical analysis, it was ascertained that the values of the Young modulus for the samples before the sterilization process-only in the cases of substances such as: trypsin, 15% glycerol and dispase-changed in a statistically significant way. In the case of dispase, the Young modulus value before the sterilization process amounted to 66.6 MPa, for trypsin this value equalled 33.9 MPa, whereas for 15% glycerol it was 11 MPa. In the case of samples after the completion of the sterilization process, the analysis did not show any statistically significant differences between the obtained results of Young's modulus depending on the respective reagents applied. It was confirmed that different methods of acellularization and the process of sterilization effect the alteration of mechanical properties of allogeneic skins. In the case of the decellularization method using SDS (Sodium Dodecyl Sulfate), liquid nitrogen and 85% glycerol the highest values of strain were observed. In the authors' opinion, it is the above-mentioned methods that should be recommended in the process of preparation of skin substitutes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available