4.6 Article

Comparative molecular approaches in Prader-Willi syndrome diagnosis

Journal

GENE
Volume 575, Issue 2, Pages 353-358

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.gene.2015.08.058

Keywords

Prader-Willi Syndrome; MLPA analysis; Genomic imprinting

Funding

  1. Romanian National Grants [PN 2-42113, PCCA 133/2014]

Ask authors/readers for more resources

Prader-Willi and Angelman syndromes are two distinct neurogenetic disorders caused by chromosomal deletions, uniparental disomy or loss of the imprinted gene expression in the 15q11-q13 region. PWS results from the lack of the paternally expressed gene contribution in the region. The aim of our study was to compare a new molecular approach based on the quantification of the expression of non-imprinted bi-allelic gene (NIPA1 and OCA2) with in house MS-PCR and the MS-MLPA test. Blood samples were collected from 12 patients, clinical criteria positives for Prader-Willi syndrome. DNA and RNA samples were isolated from white blood cells. Epigenetic changes at SNRPN gene locus were evaluated by MS-PCR technique. The expression levels of two non-imprinted genes (NIPA1 and OCA2) were evaluated in qReal-Time PCR, in order to identify type 1 and type 2 deletions. SALSA MS-MLPA kit ME028 was used to detect copy number changes and to analyze CpG islands methylation of the 15q11 region. MS-MLPA test confirmed that 8/12 patients presented different types of deletion at the SNRPN gene level (promoter, introns, and exons) and 4/8 displayed type 1 or type 2 deletion. In children with 15q11-13 deletions, the decreased level of NIPA1and OCA2 gene expression is related to chromosomal abnormality in the investigated area. The deletions were confirmed by MS-MLPA analysis, thus recommending NIPA1 and OCA2 gene expression as an alternate method to investigate deletions. (C) 2015 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available