4.6 Article

Application of a probabilistic LHS-PAWN approach to assess building cooling energy demand uncertainties

Journal

BUILDING SIMULATION
Volume 15, Issue 3, Pages 373-387

Publisher

TSINGHUA UNIV PRESS
DOI: 10.1007/s12273-021-0815-6

Keywords

building energy code (BEC); cooling energy demand; uncertainty analysis; PAWN sensitivity analysis

Funding

  1. Department of Science and Technology, Government of India [DST/TMD/UKBEE/2017/17]
  2. Zero Peak Energy Demand for India (ZED-I)
  3. Engineering and Physics Research Council EPSRC [EP/R008612/1]

Ask authors/readers for more resources

This study contrasts deterministic approach in building energy simulation with probabilistic uncertainty/sensitivity simulation approach, highlighting the higher accuracy and reliability of the latter. The PAWN method allows simultaneous treatment of continuous and categorical inputs, and is favorable when computational resources are limited and model outputs are skewed or multi-modal.
A deterministic approach to building energy simulation risks the omission of real-world uncertainties leading to prediction errors. This paper highlights limitations of this approach by contrasting it with a probabilistic uncertainty/sensitivity simulation approach. Latin hypercube sampling (LHS) generates 15000 unique model configurations to assess the effects of weather, physical and operational uncertainties on the annual and peak cooling energy demands for a residential building which situated in a hot and dry climatic region. Probabilistic simulations predicted 0.22-2.17 and 0.45-1.62 times variation in annual and peak cooling energy demands, respectively, compared to deterministic simulation. A novel density-based global sensitivity analysis (SA), i.e., PAWN, is adopted to identify dominant input uncertainties. Unlike traditional SA methods, PAWN allows simultaneous treatment of continuous and categorical inputs from a generic input-output sample. PAWN is favourable when computational resources are limited and model outputs are skewed or multi-modal. For annual and peak cooling demands, the effects of weather and operational parameters associated with airconditioner and window operation are much stronger than these of other parameters considered. Consequently, these parameters warrant greater attention during modelling and simulation stages. Bootstrapping and convergence analysis also confirm the validity of these results.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available