4.8 Article

Boosting photoelectrochemical efficiency by near-infrared-active lattice-matched morphological heterojunctions

Journal

NATURE COMMUNICATIONS
Volume 12, Issue 1, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41467-021-24569-9

Keywords

-

Funding

  1. National Natural Science Foundation of China [51732011, 21431006, U1932213, 81788101, 11227901]
  2. Foundation for Innovative Research Groups of the National Natural Science Foundation of China [21521001]
  3. Key Research Program of Frontier Sciences, CAS [QYZDJ-SSW-SLH036]
  4. Users with Excellence and Scientific Research Grant of Hefei Science Center of CAS [2015HSC-UE007]
  5. China Postdoctoral Science Foundation [BH2060000143, BH2060000155]
  6. Fundamental Research Funds for the Central Universities [WK2060000031]

Ask authors/readers for more resources

Solar conversion efficiencies of photoelectrochemical catalysis are hindered by the light harvesting range. Near-infrared-active photoanodes featuring lattice-matched morphological hetero-nanostructures can efficiently improve the efficiency of photoelectrochemical hydrogen production.
Photoelectrochemical catalysis is an attractive way to provide direct hydrogen production from solar energy. However, solar conversion efficiencies are hindered by the fact that light harvesting has so far been of limited efficiency in the near-infrared region as compared to that in the visible and ultraviolet regions. Here we introduce near-infrared-active photoanodes that feature lattice-matched morphological hetero-nanostructures, a strategy that improves energy conversion efficiency by increasing light-harvesting spectral range and charge separation efficiency simultaneously. Specifically, we demonstrate a near-infrared-active morphological heterojunction comprised of BiSeTe ternary alloy nanotubes and ultrathin nanosheets. The heterojunction's hierarchical nanostructure separates charges at the lattice-matched interface of the two morphological components, preventing further carrier recombination. As a result, the photoanodes achieve an incident photon-to-current conversion efficiency of 36% at 800nm in an electrolyte solution containing hole scavengers without a co-catalyst. The solar conversion efficiencies of photoelectrochemical catalysis are hindered by the light harvesting range. Here, the authors use near-infrared-active photoanodes that feature lattice-matched morphological hetero-nanostructures to realize efficient photoelectrochemical hydrogen production.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available