4.8 Article

Water friction in nanofluidic channels made from two-dimensional crystals

Journal

NATURE COMMUNICATIONS
Volume 12, Issue 1, Pages -

Publisher

NATURE RESEARCH
DOI: 10.1038/s41467-021-23325-3

Keywords

-

Funding

  1. EPSRC [EP/S017593/1, EP/R013063/1]
  2. Royal Society University Research Fellowship [RGF\EA\181000]
  3. European Union [852674 - AngstroCAP]
  4. Ramsay Memorial Fellowship
  5. Royal Society research grant [RGS\R2\202036]

Ask authors/readers for more resources

The study demonstrates that strong hydrophobicity does not necessarily exclude enhanced stickiness and friction, as shown with conduits made from graphite and hexagonal boron nitride.
Membrane-based applications such as osmotic power generation, desalination and molecular separation would benefit from decreasing water friction in nanoscale channels. However, mechanisms that allow fast water flows are not fully understood yet. Here we report angstrom-scale capillaries made from atomically flat crystals and study the effect of confining walls' material on water friction. A massive difference is observed between channels made from isostructural graphite and hexagonal boron nitride, which is attributed to different electrostatic and chemical interactions at the solid-liquid interface. Using precision microgravimetry and ion streaming measurements, we evaluate the slip length, a measure of water friction, and investigate its possible links with electrical conductivity, wettability, surface charge and polarity of the confining walls. We also show that water friction can be controlled using hybrid capillaries with different slip lengths at opposing walls. The reported advances extend nanofluidics' toolkit for designing smart membranes and mimicking manifold machinery of biological channels. Flow through nanometer scale channels facilitates an unmasked study of water-surface molecular interactions. Here, Keerthi et al. show with conduits made from graphite and hexagonal boron nitride that strong hydrophobicity does not rule out enhanced stickiness and friction.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available