4.8 Article

Event generation and statistical sampling for physics with deep generative models and a density information buffer

Journal

NATURE COMMUNICATIONS
Volume 12, Issue 1, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41467-021-22616-z

Keywords

-

Funding

  1. SURF Open Innovation Lab project Machine learning enhanced high-performance computing applications and computations
  2. Foundation for Fundamental Research of Matter (FOM), program 156
  3. European Union's Horizon 2020 research and innovation program under the Marie Skodowska-Curie grant [674896]
  4. SOM Sabor y origen de la Materia MEC projects
  5. Spanish MINECO Centro de Excelencia Severo Ochoa del IFIC program [SEV-2014-0398]
  6. Netherlands eScience Center under the project iDark: The intelligent Dark Matter Survey

Ask authors/readers for more resources

The researchers investigate the use of generative modeling to simulate physical events, utilizing generative machine learning models to efficiently generate events with accurate distributions. By buffering density information and using Variational Autoencoders, they are able to construct an effective method for data generation that is computationally less expensive and can help detect anomalies in the process.
Simulating nature and in particular processes in particle physics require expensive computations and sometimes would take much longer than scientists can afford. Here, we explore ways to a solution for this problem by investigating recent advances in generative modeling and present a study for the generation of events from a physical process with deep generative models. The simulation of physical processes requires not only the production of physical events, but to also ensure that these events occur with the correct frequencies. We investigate the feasibility of learning the event generation and the frequency of occurrence with several generative machine learning models to produce events like Monte Carlo generators. We study three processes: a simple two-body decay, the processes e(+)e(-)-> Z -> l(+)l(-) and pp -> tt including the decay of the top quarks and a simulation of the detector response. By buffering density information of encoded Monte Carlo events given the encoder of a Variational Autoencoder we are able to construct a prior for the sampling of new events from the decoder that yields distributions that are in very good agreement with real Monte Carlo events and are generated several orders of magnitude faster. Applications of this work include generic density estimation and sampling, targeted event generation via a principal component analysis of encoded ground truth data, anomaly detection and more efficient importance sampling, e.g., for the phase space integration of matrix elements in quantum field theories. Here, the authors report buffered-density variational autoencoders for the generation of physical events. This method is computationally less expensive over other traditional methods and beyond accelerating the data generation process, it can help to steer the generation and to detect anomalies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available