4.8 Article

Competing correlated states and abundant orbital magnetism in twisted monolayer-bilayer graphene

Related references

Note: Only part of the references are listed.
Article Physics, Multidisciplinary

Electrically tunable correlated and topological states in twisted monolayer-bilayer graphene

Shaowen Chen et al.

Summary: Twisted monolayer-bilayer graphene (tMBG) systems exhibit various correlated metallic and insulating states, as well as topological magnetic states. The phase diagram of tMBG can be switched under different perpendicular electric fields, providing a tunable platform for investigating correlated and topological states.

NATURE PHYSICS (2021)

Article Physics, Multidisciplinary

Symmetry breaking in twisted double bilayer graphene

Minhao He et al.

Summary: The study reveals that spontaneous symmetry breaking plays a crucial role in the correlated insulating and metallic states in twisted double bilayer graphene, which can be tuned by both the twist angle and an external electric field. The metallic states exhibit abrupt drops in resistivity as temperature decreases, suggesting that spontaneous symmetry breaking is the origin of the abrupt resistivity drops, while nonlinear transport seems to be due to Joule heating. These findings imply that similar mechanisms may be relevant across a broader class of semiconducting flat band van der Waals heterostructures.

NATURE PHYSICS (2021)

Article Multidisciplinary Sciences

Topological flat bands in twisted trilayer graphene

Zhen Ma et al.

Summary: Twisted trilayer graphene is a simple realistic system with flat bands and nontrivial topology, making it an ideal platform for studying strongly correlated physics. The band structures of twisted TLG are influenced by the twist angle and perpendicular electric field, resulting in unique correlated states compared to other graphene structures.

SCIENCE BULLETIN (2021)

Article Multidisciplinary Sciences

Correlation-driven topological phases in magic-angle twisted bilayer graphene

Youngjoon Choi et al.

Summary: Magic-angle twisted bilayer graphene (MATBG) exhibits a variety of correlated phenomena, and new techniques introduced can determine the topological phases that emerge in MATBG in a finite magnetic field. These topological phases form only in a specific range of twist angles and are influenced by strong electronic interactions.

NATURE (2021)

Article Physics, Multidisciplinary

Hofstadter subband ferromagnetism and symmetry-broken Chern insulators in twisted bilayer graphene

Yu Saito et al.

Summary: A small twist between two layers of graphene can lead to flat band structures, which can form ferromagnetic Chern insulators when the moire superlattice interacts with a magnetic field. In twisted bilayer graphene, Coulomb interactions and magnetic field effects give rise to new quantum states.

NATURE PHYSICS (2021)

Article Chemistry, Physical

Chern insulators, van Hove singularities and topological flat bands in magic-angle twisted bilayer graphene

Shuang Wu et al.

Summary: In magic-angle twisted bilayer graphene, doping-induced Lifshitz transitions and van Hove singularities lead to the emergence of correlation-induced gaps and topologically non-trivial subbands. With the presence of a magnetic field, quantized Hall plateaus reveal the subband topology and signal the emergence of Chern insulators with Chern numbers. Additionally, a van Hove singularity at a filling of 3.5 suggests the possibility of a fractional Chern insulator, accompanied by a crossover from low-temperature metallic to high-temperature insulating behavior.

NATURE MATERIALS (2021)

Article Physics, Multidisciplinary

Symmetry-broken Chern insulators and Rashba-like Landau-level crossings in magic-angle bilayer graphene

Ipsita Das et al.

Summary: The study presents a rich sequence of quantized Hall conductance regions in magic-angle twisted bilayer graphene (MATBG), driven by specific electronic interactions, revealing the complex nature of symmetry breaking in MATBG. Analysis of Landau level crossings provides constraints on the parameters of the MATBG Hamiltonian and allows for quantitative tests of proposed microscopic scenarios for its electronic phases.

NATURE PHYSICS (2021)

Article Physics, Multidisciplinary

Tunable van Hove singularities and correlated states in twisted monolayer-bilayer graphene

Shuigang Xu et al.

Summary: The study of electronic transport properties of twisted monolayer-bilayer graphene reveals highly tunable van Hove singularities that can cause strong correlation effects under optimum conditions by changing the twist angle or applying an electric field. This demonstrates the potential for correlated insulating states in a structure of monolayer and bilayer graphene with a small twist between them.

NATURE PHYSICS (2021)

Article Multidisciplinary Sciences

Flavour Hund's coupling, Chern gaps and charge diffusivity in moire graphene

Jeong Min Park et al.

Summary: Interaction-driven spontaneous symmetry breaking plays a key role in the emergence of correlated and topological ground states in moire systems such as magic-angle twisted bilayer graphene (MATBG). Through thermodynamic and transport measurements, we have observed broken spin/valley 'flavour' symmetry in MATBG and its nontrivial topology. Furthermore, the topological nature of the flat bands is revealed by breaking time-reversal symmetry, leading to the observation of Chern insulator states with different Chern numbers at specific filling factors. Our findings shed light on the understanding of interactions in the topological bands of MATBG, both with and without a magnetic field.

NATURE (2021)

Article Multidisciplinary Sciences

Charged skyrmions and topological origin of superconductivity in magic-angle graphene

Eslam Khalaf et al.

Summary: Topological solitons play a crucial role in insulating and superconducting behavior in stacked and twisted graphene sheets. Symmetry breaking leads to an ordered insulator, while topological solitons result in a superconductor.

SCIENCE ADVANCES (2021)

Article Multidisciplinary Sciences

Imaging orbital ferromagnetism in a moire Chern insulator

C. L. Tschirhart et al.

Summary: Researchers have found that electrons in moire flat band systems can break time-reversal symmetry, leading to a quantized anomalous Hall effect, with magnetism primarily orbital in nature. The study also reveals a significant change in magnetization as the chemical potential crosses the quantum anomalous Hall gap, consistent with the expected contribution of chiral edge states to the magnetization in an orbital Chern insulator. Additionally, mapping the spatial evolution of field-driven magnetic reversal shows reproducible micrometer-scale domains pinned to structural disorder.

SCIENCE (2021)

Article Multidisciplinary Sciences

Tunable correlated Chern insulator and ferromagnetism in a moire superlattice

Guorui Chen et al.

NATURE (2020)

Article Multidisciplinary Sciences

Intrinsic quantized anomalous Hall effect in a moire heterostructure

M. Serlin et al.

SCIENCE (2020)

Article Physics, Multidisciplinary

Superconductivity and strong correlations in moire flat bands

Leon Balents et al.

NATURE PHYSICS (2020)

Article Physics, Multidisciplinary

Correlated states in twisted double bilayer graphene

Cheng Shen et al.

NATURE PHYSICS (2020)

Article Physics, Multidisciplinary

Independent superconductors and correlated insulators in twisted bilayer graphene

Yu Saito et al.

NATURE PHYSICS (2020)

Article Physics, Multidisciplinary

Mechanism for Anomalous Hall Ferromagnetism in Twisted Bilayer Graphene

Nick Bultinck et al.

PHYSICAL REVIEW LETTERS (2020)

Article Multidisciplinary Sciences

Tunable spin-polarized correlated states in twisted double bilayer graphene

Xiaomeng Liu et al.

NATURE (2020)

Article Multidisciplinary Sciences

Strongly correlated Chern insulators in magic-angle twisted bilayer graphene

Kevin P. Nuckolls et al.

NATURE (2020)

Article Multidisciplinary Sciences

Electrical switching of magnetic order in an orbital Chern insulator

H. Polshyn et al.

NATURE (2020)

Review Chemistry, Physical

Graphene bilayers with a twist

Eva Y. Andrei et al.

NATURE MATERIALS (2020)

Article Physics, Multidisciplinary

Topological flat bands and correlated states in twisted monolayer-bilayer graphene

Louk Rademaker et al.

PHYSICAL REVIEW RESEARCH (2020)

Article Materials Science, Multidisciplinary

Quantum Hall spin liquids and their possible realization in moire systems

Ya-Hui Zhang et al.

PHYSICAL REVIEW B (2020)

Article Materials Science, Multidisciplinary

Gate-tunable topological flat bands in twisted monolayer-bilayer graphene

Youngju Park et al.

PHYSICAL REVIEW B (2020)

Article Multidisciplinary Sciences

Tuning superconductivity in twisted bilayer graphene

Matthew Yankowitz et al.

SCIENCE (2019)

Article Multidisciplinary Sciences

Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene

Aaron L. Sharpe et al.

SCIENCE (2019)

Article Physics, Multidisciplinary

Correlated Insulating States in Twisted Double Bilayer Graphene

G. William Burg et al.

PHYSICAL REVIEW LETTERS (2019)

Article Physics, Multidisciplinary

Evidence of a gate-tunable Mott insulator in a trilayer graphene moire superlattice

Guorui Chen et al.

NATURE PHYSICS (2019)

Article Materials Science, Multidisciplinary

Nearly flat Chern bands in moire superlattices

Ya-Hui Zhang et al.

PHYSICAL REVIEW B (2019)

Article Multidisciplinary Sciences

Unconventional superconductivity in magic-angle graphene superlattices

Yuan Cao et al.

NATURE (2018)

Article Multidisciplinary Sciences

Observation of fractional Chern insulators in a van der Waals heterostructure

Eric M. Spanton et al.

SCIENCE (2018)

Article Multidisciplinary Sciences

One-Dimensional Electrical Contact to a Two-Dimensional Material

L. Wang et al.

SCIENCE (2013)