4.8 Article

Combining machine learning and nanopore construction creates an artificial intelligence nanopore for coronavirus detection

Journal

NATURE COMMUNICATIONS
Volume 12, Issue 1, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41467-021-24001-2

Keywords

-

Funding

  1. AMED [JP20he0722002]

Ask authors/readers for more resources

The study introduces a method for high sensitivity detection of novel coronaviruses using nanopores and artificial intelligence, eliminating the need for RNA extraction. It demonstrates that artificially intelligent nanopores can accurately identify four coronaviruses and detect SARS-CoV-2 in saliva specimens with high sensitivity.
High-throughput, high-accuracy detection of emerging viruses allows for the control of disease outbreaks. Currently, reverse transcription-polymerase chain reaction (RT-PCR) is currently the most-widely used technology to diagnose the presence of SARS-CoV-2. However, RT-PCR requires the extraction of viral RNA from clinical specimens to obtain high sensitivity. Here, we report a method for detecting novel coronaviruses with high sensitivity by using nanopores together with artificial intelligence, a relatively simple procedure that does not require RNA extraction. Our final platform, which we call the artificially intelligent nanopore, consists of machine learning software on a server, a portable high-speed and high-precision current measuring instrument, and scalable, cost-effective semiconducting nanopore modules. We show that artificially intelligent nanopores are successful in accurately identifying four types of coronaviruses similar in size, HCoV-229E, SARS-CoV, MERS-CoV, and SARS-CoV-2. Detection of SARS-CoV-2 in saliva specimen is achieved with a sensitivity of 90% and specificity of 96% with a 5-minute measurement. Rapid, accurate and specific point-of-care diagnostics can help manage and contain fast-spreading infections. Here, the authors present a nanopore-based system that uses artificial intelligence to discriminate between four coronaviruses in saliva, with little need for sample pre-processing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available