4.8 Article

Interfacial chemical bond and internal electric field modulated Z-scheme Sv-ZnIn2S4/MoSe2 photocatalyst for efficient hydrogen evolution

Journal

NATURE COMMUNICATIONS
Volume 12, Issue 1, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41467-021-24511-z

Keywords

-

Funding

  1. National Natural Science Foundation of China [51672144, 51572137, 51702181, 52072196, 52002199, 52002200]
  2. Major Basic Research Program of Natural Science Foundation of Shandong Province [ZR2020ZD09]
  3. Shandong Provincial Key Research and Development Program (SPKRDP) [2019GGX102055]
  4. Natural Science Foundation of Shandong Province [ZR2019BEM042]
  5. Innovation and Technology Program of Shandong Province [2020KJA004]
  6. Guangdong Basic and Applied Basic Research Foundation [2019A1515110933]
  7. China Postdoctoral Science Foundation [2020M683450]
  8. Taishan Scholars Program of Shandong Province [ts201511034]

Ask authors/readers for more resources

The construction of Z-scheme heterostructures is crucial for efficient photocatalytic water splitting. By modulating Mo-S bond and internal electric field, a novel S-v-ZnIn2S4/MoSe2 photocatalyst was developed with high hydrogen evolution rate and apparent quantum yield, demonstrating significant enhancement in photocatalytic performance.
Construction of Z-scheme heterostructure is of great significance for realizing efficient photocatalytic water splitting. However, the conscious modulation of Z-scheme charge transfer is still a great challenge. Herein, interfacial Mo-S bond and internal electric field modulated Z-scheme heterostructure composed by sulfur vacancies-rich ZnIn2S4 and MoSe2 was rationally fabricated for efficient photocatalytic hydrogen evolution. Systematic investigations reveal that Mo-S bond and internal electric field induce the Z-scheme charge transfer mechanism as confirmed by the surface photovoltage spectra, DMPO spin-trapping electron paramagnetic resonance spectra and density functional theory calculations. Under the intense synergy among the Mo-S bond, internal electric field and S-vacancies, the optimized photocatalyst exhibits high hydrogen evolution rate of 63.21mmol.g(-1)h(-1) with an apparent quantum yield of 76.48% at 420nm monochromatic light, which is about 18.8-fold of the pristine ZIS. This work affords a useful inspiration on consciously modulating Z-scheme charge transfer by atomic-level interface control and internal electric field to signally promote the photocatalytic performance. The construction of Z-scheme heterostructures is of great significance for realizing efficient photocatalytic water splitting. Here, the authors report an interfacial chemical bond and internal electric field modulated Z-Scheme S-v-ZnIn2S4/MoSe2 photocatalyst for efficient hydrogen evolution.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available