4.8 Article

Improved prediction of solvation free energies by machine-learning polarizable continuum solvation model

Journal

NATURE COMMUNICATIONS
Volume 12, Issue 1, Pages -

Publisher

NATURE RESEARCH
DOI: 10.1038/s41467-021-23724-6

Keywords

-

Funding

  1. Projekt DEAL

Ask authors/readers for more resources

Accurate theoretical evaluation of solvation free energy is challenging. Here the authors introduce a machine-learning based polarizable continuum solvation approach to improve the accuracy of widely accepted continuum solvation models by almost one order of magnitude without additional computational costs.
Theoretical estimation of solvation free energy by continuum solvation models, as a standard approach in computational chemistry, is extensively applied by a broad range of scientific disciplines. Nevertheless, the current widely accepted solvation models are either inaccurate in reproducing experimentally determined solvation free energies or require a number of macroscopic observables which are not always readily available. In the present study, we develop and introduce the Machine-Learning Polarizable Continuum solvation Model (ML-PCM) for a substantial improvement of the predictability of solvation free energy. The performance and reliability of the developed models are validated through a rigorous and demanding validation procedure. The ML-PCM models developed in the present study improve the accuracy of widely accepted continuum solvation models by almost one order of magnitude with almost no additional computational costs. A freely available software is developed and provided for a straightforward implementation of the new approach. Accurate theoretical evaluation of solvation free energy is challenging. Here the authors introduce a machine-learning based polarizable continuum solvation approach to improve the accuracy of widely accepted continuum solvation models by almost one order of magnitude without additional computational costs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available