4.8 Article

Electrocatalytic upcycling of polyethylene terephthalate to commodity chemicals and H2 fuel

Journal

NATURE COMMUNICATIONS
Volume 12, Issue 1, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41467-021-25048-x

Keywords

-

Funding

  1. National Natural Science Foundation of China [21978147, 21935001]
  2. Beijing Municipal Natural Science Foundation [2214063]

Ask authors/readers for more resources

This study investigates a nickel-cobalt phosphide electrocatalyst for electroreforming PET plastic into valuable chemicals and fuel. The process shows profitability at high current densities and the developed catalyst demonstrates excellent performance in achieving desired products.
Plastic upcycling to value-added products is of great interests. Here the authors investigate a nickel-cobalt phosphide electrocatalyst for electroreforming of polyethylene terephthalate plastic toward valuable potassium diformate, terephthalic acid, and H-2 fuel. Plastic wastes represent a largely untapped resource for manufacturing chemicals and fuels, particularly considering their environmental and biological threats. Here we report electrocatalytic upcycling of polyethylene terephthalate (PET) plastic to valuable commodity chemicals (potassium diformate and terephthalic acid) and H-2 fuel. Preliminary techno-economic analysis suggests the profitability of this process when the ethylene glycol (EG) component of PET is selectively electrooxidized to formate (>80% selectivity) at high current density (>100 mA cm(-2)). A nickel-modified cobalt phosphide (CoNi0.25P) electrocatalyst is developed to achieve a current density of 500 mA cm(-2) at 1.8 V in a membrane-electrode assembly reactor with >80% of Faradaic efficiency and selectivity to formate. Detailed characterizations reveal the in-situ evolution of CoNi0.25P catalyst into a low-crystalline metal oxy(hydroxide) as an active state during EG oxidation, which might be responsible for its advantageous performances. This work demonstrates a sustainable way to implement waste PET upcycling to value-added products.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available