4.7 Article

Inhibitory Concentrations of Ciprofloxacin Induce an Adaptive Response Promoting the Intracellular Survival of Salmonella enterica Serovar Typhimurium

Journal

MBIO
Volume 12, Issue 3, Pages -

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/mBio.01093-21

Keywords

AMR; Salmonella; antimicrobial agents; cellular morphology; ciprofloxacin; confocal microscopy; transcriptomics

Categories

Funding

  1. Wellcome [206194]
  2. Wellcome Sanger Institute
  3. Wellcome senior research fellowship [215515/Z/19/Z]
  4. Innovate UK Commercial in Confidence grant to purchase the Opera Phenix
  5. National Institute for Health Research (Cambridge Biomedical Research Centre at the Cambridge University Hospitals NHS Foundation Trust)
  6. National Institute for Health Research AMR Research Capital Funding Scheme [NIHR200640]

Ask authors/readers for more resources

Antimicrobial resistance is a critical global health crisis, with rising resistance to fluoroquinolones such as ciprofloxacin. Research has shown that clinical isolates of Salmonella enterica serovar Typhimurium adapt to high concentrations of ciprofloxacin in a way that promotes intracellular survival, with different isolates responding heterogeneously to the drug.
Antimicrobial resistance (AMR) is a pressing global health crisis, which has been fueled by the sustained use of certain classes of antimicrobials, including fluoroquinolones. While the genetic mutations responsible for decreased fluoroqui-nolone (ciprofloxacin) susceptibility are known, the implications of ciprofloxacin ex-posure on bacterial growth, survival, and interactions with host cells are not well described. Aiming to understand the influence of inhibitory concentrations of cipro-floxacin in vitro, we subjected three clinical isolates of Salmonella enterica serovar Typhimurium to differing concentrations of ciprofloxacin, dependent on their MICs, and assessed the impact on bacterial growth, morphology, and transcription. We fur-ther investigated the differential morphology and transcription that occurred follow-ing ciprofloxacin exposure and measured the ability of ciprofloxacin-treated bacteria to invade and replicate in host cells. We found that ciprofloxacin-exposed S. Typhimurium is able to recover from inhibitory concentrations of ciprofloxacin and that the drug induces specific morphological and transcriptional signatures associ-ated with the bacterial SOS response, DNA repair, and intracellular survival. In addi-tion, ciprofloxacin-treated S. Typhimurium has increased capacity for intracellular rep-lication in comparison to that of untreated organisms. These data suggest that S. Typhimurium undergoes an adaptive response under ciprofloxacin perturbation that promotes cellular survival, a consequence that may justify more measured use of ciprofloxacin for Salmonella infections. The combination of multiple experimental approaches provides new insights into the collateral effects that ciprofloxacin and other antimicrobials have on invasive bacterial pathogens. IMPORTANCE Antimicrobial resistance is a critical concern in global health. In particu-lar, there is rising resistance to fluoroquinolones, such as ciprofloxacin, a first-line antimicrobial for many Gram-negative pathogens. We investigated the adaptive response of clinical isolates of Salmonella enterica serovar Typhimurium to ciprofloxa-cin, finding that the bacteria adapt in short timespans to high concentrations of ciprofloxacin in a way that promotes intracellular survival during early infection. Importantly, by studying three clinically relevant isolates, we were able to show that individual isolates respond differently to ciprofloxacin and that for each isolate, there was a heterogeneous response under ciprofloxacin treatment. The heterogeneity that arises from ciprofloxacin exposure may drive survival and proliferation of Salmonella during treatment and lead to drug resistance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available