4.0 Article

PEM Fuel Cell Hydrogen Support Using PV-Electrolyzer Generation System

Journal

Publisher

INT INFORMATION & ENGINEERING TECHNOLOGY ASSOC
DOI: 10.14447/jnmes.v24i2.a01

Keywords

Photovoltaic; PV; Fuel cell; PEMFC; Electrolyzer; MPPT

Funding

  1. Algerian Ministry of Higher Education and Scientific Research [A01L07UN190120180005]

Ask authors/readers for more resources

Due to the increasing global energy consumption, renewable energy technology is necessary to address environmental problems. Hydrogen is a promising alternative fuel for the future, produced through water electrolysis using renewable energy to provide direct electric current.
In consequence of increasing global energy consumption, the environmental problems such as pollution and the drain of conventional energy resources such as coal, gas and liquefied petrol. To tame this by implementing seeming technology of renewable energy, hydrogen is one of the promising alternative fuels for the future because it has the capability of storing energy of high quality. Therefore, the hydrogen has been visualized to become the cornerstone of future energy systems. It is produced from water electrolysis under electrochemical interaction. Water electrolyzer converts electricity into chemical energy which produces hydrogen and oxygen; this can be achieved by passing DC electric current between two electrodes separated by electrolyte. The direct electric current is delivered by source renewable energy, photovoltaic or wind system. In this paper the different parts of indirect coupling PV with alkaline electrolyzer for hydrogen production have been studied and investigated using Matlab Simulink environment. The developed models allow us the analysis of current-voltage characteristics for both systems PV and Electrolyzer, respectively, as well as the principal parameters affecting the performance of the alkaline electrolyzer.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available