4.5 Article

Experimental investigation of dehumidification process regulated by the photo thermoelectric system

Journal

WATER SCIENCE AND TECHNOLOGY
Volume 84, Issue 10-11, Pages 3211-3226

Publisher

IWA PUBLISHING
DOI: 10.2166/wst.2021.368

Keywords

dehumidification; photovoltaic; simulation; thermoelectric module; validation

Funding

  1. University of Hafr Al Batin [G-204-2020]
  2. King Fahd University of Petroleum and Minerals, Dhahran, KSA

Ask authors/readers for more resources

This study investigated the optimal structural parameters of the PVTE-D under different operating conditions and revealed a novel configuration for higher water condensation capacity.
To decrease indoor relative humidity and have relaxing environments, small dehumidifiers are widely used in tropical climatic. Due to the benefits of eco-friendly, small size and silence operation, thermoelectric dehumidifier has gained interest but have limited practical application due to poor efficiency. Therefore, this study investigates the dehumidification characteristics of the thermoelectric module powered by a photovoltaic system for the production of fresh water under real climatic conditions. The performance of a novel prototype named as Photo Thermoelectric Dehumidifier (PVTE-D) was investigated both numerically and experimentally in different combinations of airflow rate and input power. The results obtained from the experiment suggested that the water condensate collection was increased by increasing the input power from a PV panel to the TE-D. In the month of May, the maximum water condensate collection of 1,852.3 mL/hr was attained at the input supply of 6 A and 5 V to the PVTE-D system. In the majority of cases, when the airflow rate is below 0.013 kg/s, maximum collections of water condensate have been achieved. This study provides a detailed understanding of the optimally suitable structural parameters of the PVTE-D under different operating conditions and reveals a novel configuration for higher water condensation capacity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available