4.8 Article

Acesulfame aerobic biodegradation by enriched consortia and Chelatococcus spp.: Kinetics, transformation products, and genomic characterization

Journal

WATER RESEARCH
Volume 202, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2021.117454

Keywords

Acesulfame; Chelatococcus; Biodegradation; Genome-centric; Transformation products

Funding

  1. Hong Kong Theme-based Research project [T21-604/19-R]

Ask authors/readers for more resources

Next-generation sequencing methods were used to explore the ACE-degrading communities enriched from activated sludge, revealing four metagenome-assembled genomes that may be responsible for ACE biodegradation. Additionally, two ACE-degrading pure strains affiliated to Chelatococcus genus showed high degradation capability and could mineralize around 90% of total organic carbon. This study provides valuable insights into ACE biodegradation and its biotransformation products.
The artificial sweetener Acesulfame (ACE) has been frequently detected in wastewater treatment plants (WWTPs) and is regarded as an emerging pollutant due to its low biodegradability. However, recent observations of ACE biodegradation in WWTPs have stimulated interest in the ACE-degrading bacteria and mineralization pathways. In this study, next-generation sequencing methods, Illumina and Nanopore sequencing, were combined to explore the ACE-degrading communities enriched from the activated sludge of six municipal wastewater treatment plants. Metagenomic investigations indicated that all enrichments were similarly dominated by the phyla Proteobacteria and Planctomycetes. Notably, at the species level, four metagenome-assembled genomes (MAGs) were shared by six enriched communities with considerable abundances, indicating that they may be responsible for ACE biodegradation in the enrichments. Besides, two ACE-degrading pure strains, affiliated to the genus Chelatococcus, were isolated from the enrichment. The genomic analysis showed that these two isolates were the new species that were genetically distinct from their relatives. Two type strains, Chelatococcus asaccharovorans DSM 6462 and Chelatococcus composti DSM 101465, could not degrade ACE, implying that the ACE-degrading capability was not shared among the different species in the genus Chelatococcus. The results of the degradation experiment showed that the two isolates could use ACE as the sole carbon source and mineralize similar to 90% of the total organic carbon. Three biotransformation products (TP96, TP180B, and TP182B) were demonstrated by UPLC-QTOF-MS. The results of this study provide valuable insights into ACE biodegradation and its biotransformation products.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available