4.8 Article

Extent of bioleaching and bioavailability reduction of potentially toxic heavy metals from sewage sludge through pH-controlled fermentation

Journal

WATER RESEARCH
Volume 201, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2021.117303

Keywords

Alkaline fermentation; Dissolved organic matter; Metal solubilization; Volatile fatty acids; Waste activated sludge

Funding

  1. Scientific and Technological Research Council of Turkey (TUBITAK) [116Y227]

Ask authors/readers for more resources

A novel approach was developed in this study using pH-controlled fermentation and anaerobic metal bioleaching to reduce ecotoxicity potential of fermented sludge before its land application, showing promising results for reducing metal content and bioavailability in biosolid production for agricultural purposes.
Utilization of anaerobically stabilized sewage sludge on arable lands serve as a renewable alternative to chemical fertilizers as it enables recycling of valuable nutrients to food chain. However, probable pres-ence of heavy metals in sewage sludge restricts the use of stabilized sludge on lands. In this study, a novel approach based on pH-controlled fermentation and anaerobic metal bioleaching was developed to reduce ecotoxicity potential of fermented sludge prior to its land application. Sewage sludge was sub-jected to pH-controlled fermentation process at acidic, neutral, and alkaline pH levels with the aim of increasing metal solubilization and decreasing bioavailable metal fractions through anaerobic bioleaching. Alkaline reactor performed the best among all reactors and resulted in 3-fold higher hydrolysis (34%) and 6-fold higher acidification (19%) efficiencies along with 43-fold (in average) higher metal solubiliza-tion than that of neutral pH reactor. As a result of alkaline fermentation, 32-57% of the metals remained as bioavailable and 34-59% of the metals were encapsulated as non-bioavailable within solid fraction of fermented sludge (biosolid), whereas 8-12% of total metal was solubilized into fermentation liquor. Our results reveal that anaerobic bioleaching through alkaline fermentation enables biosolid production with less metal content and low bioavailability, facilitating its utilization for agricultural purposes. (c) 2021 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available