4.4 Article

Testing the Robustness of Commercial Lane Departure Warning Systems

Journal

TRANSPORTATION RESEARCH RECORD
Volume 2675, Issue 12, Pages 385-400

Publisher

SAGE PUBLICATIONS INC
DOI: 10.1177/03611981211029646

Keywords

-

Ask authors/readers for more resources

This study proposes a novel robustness assessment methodology and defines a robustness index based on regulatory tests to analyze the real-world performance of lane departure warning systems. The research found that the robustness index of the light truck was lower than that of the passenger car, and TTLC was inversely proportional to lateral speed.
Assessment methods are needed to rate the performances of advanced driver assistance systems in a range of real-world conditions, enabling the possibility of mandating minimum performance requirements beyond standardized, regulatory pass-or-fail tests, and ultimately ensuring a real and objectively measurable safety benefit. To bridge the gap between regulatory and real-world performance, this work presents a novel robustness assessment methodology and defines a robustness index determined from regulatory tests to analyze the real-world performance of lane departure warning (LDW) systems. In this context, a robust system means that it is insensitive to changes in driving conditions or environmental conditions. Distance to line (DTL) and time to line crossing (TTLC) were calculated for a light truck and a passenger car, and a black box model of the LDW systems was developed to predict their performance over different lane markings, drifting directions, and vehicle lateral and longitudinal speeds. During the test, neither of the vehicles triggered warning in around 10% of the trials despite the perfect condition of the markings painted on the proving ground. The type of lane marking significantly influenced DTL for both vehicles. For the light truck, the drifting direction, marking type, and their interaction were found to be statistically significant, which resulted in a lower robustness index than that of the passenger car. For both vehicles, TTLC was inversely proportional to the lateral speed, which greatly influences crash avoidance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available