4.1 Article

The Coordination Chemistry and Stoichiometry of Extracted Diglycolamide Complexes of Lanthanides in Extraction Chromatography Materials

Journal

SOLVENT EXTRACTION AND ION EXCHANGE
Volume 40, Issue 1-2, Pages 6-27

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/07366299.2021.1956121

Keywords

Diglycolamide; Extraction Chromatography; Rare Earth Separations

Funding

  1. Critical Materials Institute, an Energy Innovation Hub - U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office
  2. U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Scientific User Facilities Division [DE-AC02-06CH11357]
  3. U.S. Department of Energy Office of Science User Facility [DE-AC02-05CH11231]
  4. U.S. Department of Energy [DE-AC05-00OR22725]

Ask authors/readers for more resources

This study introduces a low-cost model using porous resins to support DGAs, achieving the desired combination of solvent extraction selectivity and ease of operation of sorbent columns.
Industrial rare earth element (REE) separations predominantly utilize solvent extraction processes tailored toward conventional resources such as bastnasite, monazite, and ion adsorption clays. Advances in diglycolamide (DGA) chemistry have shown effective extraction characteristics for REE separations. However, limitations associated with traditional DGA solvent extraction techniques, such as third-phase formation and gelling, have hindered commercial viability. By supporting DGA extractants on porous resins such as polystyrene divinyl benzene (PS-DVB), the desirable combination of solvent extraction selectivity and ease of operation of sorbent columns can be achieved. To design a low-cost model for such solid-supported DGAs, extraction characteristics as influenced by the underlying coordination chemistry must be explored to achieve efficient functional systems. Within this study, we report novel DGA resin materials, each incorporating one of the DGAs N,N,N',N'-tetra-(1-octyl)-3-oxapentane-1,5-diamide (TODGA), N,N '-dimethyl-N,N '-dioctyl-3-oxapentane-1,5-diamide (DMDODGA), and 2,2MODIFIER LETTER PRIME-oxybis(1-(3-(((2-ethylhexyl)thio)methyl)-4-methylpyrrolidin-1-yl)ethan-1-one) (DEHPDGA). The affinity of DGAs across the lanthanide (Ln) series was evaluated for both hydrochloric acid and nitric acid media with varying Ln feed concentrations to study distribution ratios and loading characteristics. Focusing on dysprosium, extended X-Ray Absorption Fine Structure (EXAFS) and density functional theory (DFT) calculations were also utilized to explore coordination chemistry and their effects on ligand performance. The general trend for both acid media resulted in DMDODGA having the highest extraction strength of all three DGAs at varying acid concentrations. Coordination-chemistry analysis supported by loading data, DFT calculations, and EXAFS results under forced loading conditions posited less than the expected 3:1 ligand-to-metal coordination.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available