4.7 Article

Performance enhancement of a photovoltaic module using phase change material nanoemulsion as a novel cooling fluid

Journal

SOLAR ENERGY MATERIALS AND SOLAR CELLS
Volume 225, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.solmat.2021.111060

Keywords

Photovoltaic; Thermal management; Phase change material; Nanoemulsion; Supercooling; Thermophysical properties

Funding

  1. National Key R&D Program of China [2020YFA0210704]

Ask authors/readers for more resources

By developing a low-supercooling phase change material nanoemulsion as a coolant for PV module thermal management system, it can effectively reduce the temperature of PV modules and reduce energy consumption, showing better thermal management performance than traditional water cooling systems.
Maintaining a suitable temperature for the photovoltaic (PV) module is of great significance but a challenge. Herein, a low-supercooling phase change material (PCM) nanoemulsion was developed as a promising coolant for use in the PV module thermal management system. OP35E was used as the paraffinic PCM and the phase change characteristics and thermophysical properties of the as-prepared PCM nanoemulsions were investigated. It is shown that OP35E-nanoemulsions possess a melting point of roughly 34 ?C and ignorable supercooling. The apparent specific heats of low-supercooling OP35E-nanoemulsions are 2.29?3.29 times that of water at the phase transition range, and its viscosities is slightly higher than that of water. Furthermore, the thermal management performance of water and OP35E-nanoemulsions on PV modules was evaluated. Compared with water, the PV module temperature further reduced by 5.3% when employing 20 wt% OP35E-nanoemulsion. More importantly, using 10 wt% and 20 wt% OP35E-nanoemulsions only required less than 50% of the pumping power consumption of the water-cooling system to reduce the PV module temperature to the same. On the contrary, owing to the lower apparent specific heat caused by the futile latent heat, the OP35E-nanoemulsion with large supercooling exhibited the worst thermal management performance with the highest PV module temperature and pumping power consumption, and lowest output power. Therefore, the outstanding characteristics and better cooling performance than water of the low-supercooling nanoemulsions make them show great potential in the PV module thermal management system as a novel kind of heat transfer fluids with improved specific heat.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available