4.6 Article

Effects of oxygen concentration variation on the structural and optical properties of reactive sputtered WOx thin film

Journal

SOLAR ENERGY
Volume 222, Issue -, Pages 202-211

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.solener.2021.05.031

Keywords

Transition metal oxides; Optical properties; Spectroscopy; Perovskite solar cells

Categories

Funding

  1. Bangabandhu Fellowship Trust (BBFT), Bangladesh
  2. National University of Malaysia [LRGS/1/2019/UKM-UKM/6/1]
  3. Taif University, Taif, Saudi Arabia [TURSP-2020/264]

Ask authors/readers for more resources

The study investigates the influence of oxygen concentration on the structural and optical properties of WOx films, prepared by reactive sputtering at varying oxygen concentrations. The films' thickness and surface roughness were found to be dependent on oxygen concentration, impacting their optical parameters. The optimized WOx film shows potential as an efficient electron transport layer for perovskite solar cells, achieving high quantum efficiency and short-circuit current density.
Tungsten oxide (WOx) has been widely investigated due to mainly its optoelectronic properties. This study primarily aimed to examine the influence of oxygen concentration on the structural and optical properties of WOx films. Herein, WOx thin films have been prepared by reactive sputtering method at low power (50 W) while controlling the Ar:O-2 gas flow rate to vary oxygen concentration. Energy Dispersive X-ray (EDX) analysis reveals that the oxygen concentration depends on the gas flow rate. Such oxygen concentration changes affect the film's thickness, confirmed by the field emission scanning electron microscope (FESEM). Atomic force microscopy (AFM) analysis ensures the dependency of surface roughness of the films on the oxygen concentration. The developed films exhibit the amorphous state as validated by X-ray Diffraction (XRD) analysis. The Ultraviolet-Visible (UV-Vis) spectroscopy measurement was also conducted to determine transmittance and absorbance of the film, which further allows realizing necessary optical parameters, such as absorption coefficient, skin depth, energy bandgap, refractive index, extinction coefficient, etc. The oxygen concentration-dependent optical parameters are investigated in the spectral range of UV to near-infrared regions to ensure the use of WOx for optoelectronic device applications. Finally, we considered the optimized WOx film as a potential electron transport layer (ETL) to realize an efficient perovskite solar cell. The optics and optimization of this solar cell were studied by finite-difference time-domain (FDTD) simulations. The investigation allows us to calculate the maximum quantum efficiency (QE) and short-circuit current density (J(SC)) of similar to 90% and 22.1 mA/cm(2), respectively.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available