4.7 Article

Self-template synthesis of spherical mesoporous tin dioxide from tin-polyphenol-formaldehyde polymers for conductometric ethanol gas sensing

Journal

SENSORS AND ACTUATORS B-CHEMICAL
Volume 341, Issue -, Pages -

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.snb.2021.129965

Keywords

Mesoporous material; Colloidal sphere; Tin dioxide; Self-template synthesis; Gas sensing

Funding

  1. National Natural Science Foundation of China [21701130]
  2. Key Research and Development Program of Shaanxi [2021GY-225]
  3. Foundation of State Key Laboratory of Highefficiency Utilization of Coal and GreenChemical Engineering [2020KF42]

Ask authors/readers for more resources

Spherical mesoporous SnO2 materials with tunable diameter, large pore size and high specific surface area are synthesized via a self-template strategy by direct thermal decomposition of tin-polyphenol-formaldehyde polymers. Gas sensors fabricated from these materials exhibit excellent sensitivity to ethanol, fast response and recovery time, good repeatability, and long-term stability, showing potential applications in catalysis, sensing and energy storage.
Spherical mesoporous tin dioxides are emerging sensing materials for fabrication of gas sensor applied in various fields. However, the synthesis of spherical mesoporous SnO2 with uniform shape and small diameter (i.e., <100 nm) is still challenging. Herein, spherical mesoporous SnO2 materials with tunable diameter (55 110 nm), large pore size (similar to 5.8 nm) and high specific surface area (80.9-185.6 m(2)/g) are synthesized via a self-template strategy by direct thermal decomposition of tin-polyphenol-formaldehyde polymers (TPFPs). Spherical TPFPs are synthesized via a sol-gel process using a low-cost, nontoxic and renewable natural polyphenol (i.e., tannic acid) as a ligand, formaldehyde as a cross-linking agent, tin ions as a metal source in alkaline conditions. Block copolymers can regulate the polymerization process and promote the formation of uniform spheres. The diameter of TPFPs and their derived spherical mesoporous SnO2 can be adjusted by changing the amount of block co-polymers. The gas sensors fabricated from spherical mesoporous SnO2 exhibit excellent sensitivity to ethanol (18.9@50 ppm), fast response and recovery time (4 s / 44 s), good repeatability and long-term stability. This work demonstrates a reliable method for synthesis of spherical mesoporous SnO2, which could be potentially applied in catalysis, sensing and energy storage.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available