4.7 Article

Recognition of metallic and semiconductor single-wall carbon nanotubes using the photoelectric method

Journal

SENSORS AND ACTUATORS A-PHYSICAL
Volume 332, Issue -, Pages -

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.sna.2021.113108

Keywords

Silicon surface; Carbon nanotube composites; Sensor application

Funding

  1. European Unions Horizon 2020 Research and Innovation Programme under the Marie Skodowska-Curie grant [101008159]
  2. Grant of the Ministry of Education and Science of Ukraine
  3. Marie Curie Actions (MSCA) [101008159] Funding Source: Marie Curie Actions (MSCA)

Ask authors/readers for more resources

An innovative application of deep barrier silicon structures for sensory devices with photoelectrical transformation has been suggested. The principal possibility of the photovoltaic transducer implementation for identification of metallic and semiconductor single-wall carbon nanotubes covered with surfactant in water solution was analyzed in detail. The results are explained by local electrostatic influence on the parameters of recombination centers at the silicon surface.
an innovative application of deep barrier silicon structures for sensory devices with photoelectrical transformation has been suggested. The principal possibility of the photovoltaic transducer implementation for identification of metallic and semiconductor single-wall carbon nanotubes covered with surfactant in water solution was analyzed in detail. The obtained results are qualitatively explained by local electrostatic influence on the parameters of recombination centers at the silicon surface. This influence can be associated with the dipole moment of molecules absorbed at the surface of the nanotube from surfactant sodium dodecylbenzene sulfonate (SDBS). Moreover, the spatial configuration of charged fragments near the defects at the silicon surface can occur. Another possible reason for carbon nanotubes identification is due to the different polarizability of metallic and semiconductor nanotubes. These results are explained in the frame of Stevenson-Keyes's theory. The reported effect can be further applied as the basis for the control and selection of carbon nanotubes with different conductivity types. (c) 2021 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available