4.6 Article

Complex Environment Path Planning for Unmanned Aerial Vehicles

Journal

SENSORS
Volume 21, Issue 15, Pages -

Publisher

MDPI
DOI: 10.3390/s21155250

Keywords

unmanned aerial vehicles; narrow passages; path planning; pruning; trajectory prediction

Funding

  1. Jilin Province Education Department projects [JJKH20200802KJ, JJKH20200791KJ]

Ask authors/readers for more resources

This paper addresses the challenges of safe flying in complex urban environments for unmanned aerial vehicles through the use of BS-RRT for global path planning and RMGM(1,1) for predicting flight paths of dynamic obstacles, achieving faster convergence speed, higher stability, and more accurate trajectory predictions. The proposed algorithms provide effective solutions for path planning in urban environments with narrow passages and few dynamic flight obstacles.
Flying safely in complex urban environments is a challenge for unmanned aerial vehicles because path planning in urban environments with many narrow passages and few dynamic flight obstacles is difficult. The path planning problem is decomposed into global path planning and local path adjustment in this paper. First, a branch-selected rapidly-exploring random tree (BS-RRT) algorithm is proposed to solve the global path planning problem in environments with narrow passages. A cyclic pruning algorithm is proposed to shorten the length of the planned path. Second, the GM(1,1) model is improved with optimized background value named RMGM(1,1) to predict the flight path of dynamic obstacles. Herein, the local path adjustment is made by analyzing the prediction results. BS-RRT demonstrated a faster convergence speed and higher stability in narrow passage environments when compared with RRT, RRT-Connect, P-RRT, 1-0 Bg-RRT, and RRT*. In addition, the path planned by BS-RRT through the use of the cyclic pruning algorithm was the shortest. The prediction error of RMGM(1,1) was compared with those of ECGM(1,1), PCGM(1,1), GM(1,1), MGM(1,1), and GDF. The trajectory predicted by RMGM(1,1) was closer to the actual trajectory. Finally, we use the two methods to realize path planning in urban environments.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available