4.6 Article

A Synchronous Prediction Model Based on Multi-Channel CNN with Moving Window for Coal and Electricity Consumption in Cement Calcination Process

Journal

SENSORS
Volume 21, Issue 13, Pages -

Publisher

MDPI
DOI: 10.3390/s21134284

Keywords

energy consumption prediction; moving window; multi-channel convolutional neural networks

Funding

  1. National Natural Science Foundation of China [62073281]
  2. Hebei Provincial Natural Science Foundation [F2019203385]
  3. Hebei Provincial Science and Technology Plan Project [19211602D]
  4. Second Batch of Youth Top-Notch Talent Support Program in Hebei Province [5040050]

Ask authors/readers for more resources

This study proposes a data-driven prediction method combining moving window and multi-channel convolutional neural networks for synchronous prediction of electricity and coal consumption. Experimental results demonstrate that this method outperforms other approaches with better performance using actual data from a cement plant.
The precision and reliability of the synchronous prediction of multi energy consumption indicators such as electricity and coal consumption are important for the production optimization of industrial processes (e.g., in the cement industry) due to the deficiency of the coupling relationship of the two indicators while forecasting separately. However, the time lags, coupling, and uncertainties of production variables lead to the difficulty of multi-indicator synchronous prediction. In this paper, a data driven forecast approach combining moving window and multi-channel convolutional neural networks (MWMC-CNN) was proposed to predict electricity and coal consumption synchronously, in which the moving window was designed to extract the time-varying delay feature of the time series data to overcome its impact on energy consumption prediction, and the multi-channel structure was designed to reduce the impact of the redundant parameters between weakly correlated variables of energy prediction. The experimental results implemented by the actual raw data of the cement plant demonstrate that the proposed MWMC-CNN structure has a better performance than without the combination structure of the moving window multi-channel with convolutional neural network.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available