4.6 Article

Using a Retro-Reflective Membrane and Laser Doppler Vibrometer for Real-Time Remote Acoustic Sensing and Control

Journal

SENSORS
Volume 21, Issue 11, Pages -

Publisher

MDPI
DOI: 10.3390/s21113866

Keywords

retro-reflective membrane; remote acoustic sensing; sound pressure measurement; laser Doppler vibrometer (LDV); active noise control (ANC)

Funding

  1. Australian Government Research Training Program Scholarship - Australian Research Council's Linkage Project funding scheme [LP160100616]

Ask authors/readers for more resources

This paper investigates the performance and challenges of using a retro-reflective film as an acoustic membrane pick-up with an LDV to form a remote acoustic sensing apparatus. Theoretical analysis and systematic experiments were conducted to characterize the membrane's performance, resulting in successful noise reduction and sound pressure level sensing. The demonstrated active control system showed a significant 22.4 dB noise reduction over a wide frequency range, showcasing the potential and advantages of this solution over traditional microphones.
Microphones have been extensively studied for many decades and their related theories are well-established. However, the physical presence of the sensor itself limits its practicality in many sound field control applications. Laser Doppler vibrometers (LDVs) are commonly used for the remote measurement of surface vibration that are related to the sound field without the introduction of any such physical intervention. This paper investigates the performance and challenges of using a piece of retro-reflective film directly as an acoustic membrane pick-up with an LDV to sense its vibration to form a remote acoustic sensing apparatus. Due to the special properties of the retro-reflective material, the LDV beam can be projected to the target over a wide range of incident angles. Thus, the location of the LDV relative to the pick-up is not severely restricted. This is favourable in many acoustic sensing and control applications. Theoretical analysis and systematic experiments were conducted on the membrane to characterise its performance. One design has been selected for sensing sound pressure level above 20 dB and within the 200 Hz to 4 kHz frequency range. Two example applications-remote speech signal sensing/recording and an active noise control headrest-are presented to demonstrate the benefits of such a remote acoustic sensing apparatus with the retro-reflective material. Particularly, a significant 22.4 dB noise reduction ranging from 300 Hz to 6 kHz has been achieved using the demonstrated active control system. These results demonstrate the potential for such a solution with several key advantages in many applications over traditional microphones, primarily due to its minimal invasiveness.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available