4.7 Article

Biomethane production from whole and extracted algae biomass: Long-term performance evaluation and microbial community dynamics

Journal

RENEWABLE ENERGY
Volume 170, Issue -, Pages 38-48

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.renene.2021.01.113

Keywords

Anaerobic digestion; Algal biomass; Microbial community dynamics; Organic loading rate; Long-chain fatty acids

Funding

  1. DOE from the Office of Science of the U.S. Department of Energy [22902]
  2. National Center for Research Resources [5P20RR016448-10]
  3. National Institute of General Medical Sciences from the National Institutes of Health [8 P20 GM103397-10]

Ask authors/readers for more resources

The study found that whole cell algal biomass digestion produced higher methane productivity compared to lipid-extracted algal biomass residues. At high organic loading rates, the volume methane production rate in the residues digestion system reached its peak, but long-chain fatty acids were identified as the main inhibitor.
Anaerobic digestion (AD) experiments were conducted on an industrial algae strain of Nannochloropsis salina in two identical 5-liter digesters for about 300 days. One digester was fed with whole cell algal biomass (WCB) while another with lipid-extracted algal biomass residues (LEB). WCB digester shows higher specific methane productivity ranging from 0.59 to 0.65 m(3) CH4/kgVS, while that in LEB digester ranges from 0.29 to 0.42 m(3) CH4/kgVS. Results show that organic loading rate (OLR) in LEB digester can reach up to 5.0 gVS/L/d, and WCB digester failed at that of 3.0 gVS/L/d since long-chain fatty acids (LCFA) were identified as the main inhibitor during AD of algal biomass. At these two maximum OLR, both WCB and LEB digester could achieve a volumetric methane production rate of 1.40 m(3) CH4/m(3)/d. Illumina MiSeq sequencing targeting 16S rRNA genes revealed that Proteiniclasticum, Tissierella, Methanosaeta and Methanomethylovorans were dominant genus at low OLR, while Trichococcus, Levilinea Methanosaeta and Methanobacterium dominated under high OLR. Furthermore, population shifts in methanogenic archaeal communities to Methanobacterium in WCB digester were noticed as aceticlastic methanogens are more sensitive to LCFA than hydrogenotrophic methanogens. (C) 2021 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available