4.8 Review

Heteroatom-doped graphene-based materials for sustainable energy applications: A review

Journal

RENEWABLE & SUSTAINABLE ENERGY REVIEWS
Volume 143, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.rser.2021.110849

Keywords

Heteroatom-doped graphene; Energy conversion and storage; Hydrogen production; Structural-oriented research

Funding

  1. National Research Foundation of Korea (NRF) [2019R1A2C1009871, 2019H1D3A1A01071209, 2020R1I1A1A01065748]
  2. Korea Basic Science Institute (National research Facilities & Equipment Center) grant - Ministry of Education [2019R1A6C1010042]
  3. National Research Foundation of Korea [2020R1I1A1A01065748, 2019R1A2C1009871, 2019H1D3A1A01071209] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

Graphene is an excellent energy material with unique properties, but its application is limited due to zero band gap. Doping with heteroatoms can enhance the physicochemical properties of graphene, making it an ideal material for various fields. These improved materials have made significant progress in energy conversion and storage technologies.
The demand for sustainable energy storage and production is vital and continues to grow with increasing human population. Energy utilization and environmental protection demand urgent attention in the development of energy devices, including the expansion and assessment of earth abundant and inexpensive materails. Recently, two-dimensional (2D) structured graphene has emerged as an outstanding energy material due to its excellent physicochemical properties, for example, high thermal and electrical conductivity, high surface area, strong mechanical strength, and an excellent chemical stability. However, pure graphene has a band gap of zero significantly limiting its application as a material. Among the various approaches used to alter the properties of graphene is doping with a heteroatom, which has been shown to be an efficient process in tailoring the properties of 2D-graphene. Heteroatom-doped graphene has several improved physicochemical properties, making graphene a favorable material for application in various fields. In this review, we report the usage and advancement of heteroatom-doped graphene materials in various energy conversion and storage technologies, including supercapacitors, batteries, dye-sensitized solar cells, and hydrogen production from electrocatalytic water splitting. Furthermore, we have also highlighted the recent developments made to date and systematically discuss physicochemical mechanisms, and the precise advantages obtained by the doping of heteroatoms. Finally, the challenges and future perspectives for heteroatom-doped graphene materials are outlined. The information provided in this review should be useful to any researchers involved in the field of graphene research for wide-ranging applications, and structural-oriented (morphology, structure, size and composition) research.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available