4.6 Article

Timing-dependent differential effects of unexpected events on error processing reveal the interactive dynamics of surprise and error processing

Journal

PSYCHOPHYSIOLOGY
Volume 58, Issue 12, Pages -

Publisher

WILEY
DOI: 10.1111/psyp.13922

Keywords

cognitive control; delta-to-theta oscillation; error processing; surprise; unexpected event

Funding

  1. National Institutes of Health [R01 NS102201]

Ask authors/readers for more resources

This study investigated the effects of action errors and unexpected perceptual events on behavior and neural oscillations using scalp EEG. The results indicated that unexpected events had different impacts on behavior and frontal midline delta-to-theta dynamics during different post-error periods, supporting the concept of two distinct post-error stages.
When unexpected events occur during goal-directed behavior, they automatically trigger an orienting-related cascade of psychological and neural processes through which they influence behavior and cognition. If the unexpected event was caused by an action error, additional error-specific, strategic-related processes have been proposed to follow the initial orienting period. Little is known about the neural interactions between action errors and unexpected perceptual events, two instantiations of unexpected events, in these two putative stages of post-error processing. Here, we aimed to address this by investigating the electrophysiological dynamics associated with action errors and unexpected perceptual events using scalp EEG with a focus on the frontal midline (FM) delta-to-theta oscillations (1-8 Hz) indicative of the performance-monitoring system. Specifically, we examined how the timing of unexpected sounds would influence behavior and neural oscillations after action errors, depending on the length of the intertrial interval (ITI). Our data showed that unexpected sounds aggravated post-error decreases in accuracy when they occurred (1) immediately after errors (i.e., post-error orienting period), regardless of ITI and (2) immediately after the post-error stimulus (i.e., post-error strategic period), at short ITIs. Meanwhile, action errors and unexpected sounds independently produced increased FM delta-to-theta power during the post-error orienting period, regardless of ITIs. However, when unexpected sounds occurred during the post-error strategic period, action errors produced lower FM delta-to-theta power than correct responses, at short ITIs. These differential effects of unexpected events on behavior and FM delta-to-theta dynamics support the notion of the two post-error periods during which different processes are implemented.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available