4.8 Article

A unified energy-optimality criterion predicts human navigation paths and speeds

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.2020327118

Keywords

optimization; locomotion; human movement predictive theory; metabolic energy

Funding

  1. NSF [CMMI-1254842]
  2. NIH [R01GM13592301]

Ask authors/readers for more resources

This study introduces a unified optimality criterion that predicts human walking paths and speeds in various contexts. By characterizing the metabolic cost of turning and generalizing the cost landscape to different trajectories, considering deviations in velocity direction from body orientation, it was found that humans tend to slow down and never use sharp turns when walking.
Navigating our physical environment requires changing directions and turning. Despite its ecological importance, we do not have a unified theoretical account of non-straight-line human movement. Here, we present a unified optimality criterion that predicts disparate non-straight-line walking phenomena, with straightline walking as a special case. We first characterized the metabolic cost of turning, deriving the cost landscape as a function of turning radius and rate. We then generalized this cost landscape to arbitrarily complex trajectories, allowing the velocity direction to deviate from body orientation (holonomic walking). We used this generalized optimality criterion to mathematically predict movement patterns in multiple contexts of varying complexity: walking on prescribed paths, turning in place, navigating an angled corridor, navigating freely with end-point constraints, walking through doors, and navigating around obstacles. In these tasks, humans moved at speeds and paths predicted by our optimality criterion, slowing down to turn and never using sharp turns. We show that the shortest path between two points is, counterintuitively, often not energy-optimal, and, indeed, humans do not use the shortest path in such cases. Thus, we have obtained a unified theoretical account that predicts human walking paths and speeds in diverse contexts. Our model focuses on walking in healthy adults; future work could generalize this model to other human populations, other animals, and other locomotor tasks.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available