4.5 Article

Preparation of poly(acrylamide-co-2-acrylamido-2-methylpropan sulfonic acid)-g-Carboxymethyl cellulose/Titanium dioxide hydrogels and modeling of their swelling capacity and mechanic strength behaviors by response surface method technique

Journal

POLYMER ENGINEERING AND SCIENCE
Volume 61, Issue 7, Pages 2083-2096

Publisher

WILEY
DOI: 10.1002/pen.25736

Keywords

biomedical hydrogel; mechanic strength; modeling; RSM; swelling

Ask authors/readers for more resources

The study focused on developing new generation, unique, high mechanical strength, and biocompatible hydrogel composites for potential use as biomaterials. Modeling the swelling capacity and mechanical strength behavior of hydrogels is a complex yet important domain, and the study successfully proposed composition parameters for modeling these behaviors using a response surface method. The results indicated that the model had good performance in predicting the swelling capacity and fracture strength of the hydrogel composites.
It is very important that new generation, unique, high mechanical strength, and biocompatible hydrogel composites are developed due to their potential to be used as biomaterials in the biomedical field. Modeling of the swelling capacity and mechanical strength behavior of hydrogels is a domain of steadily increasing academic and industrial importance. These behaviors are difficult to model accurately due to hydrogels show very complex behavior depending on the content. In this study, a series of poly(acrylamide-co-2-acrylamido-2-methylpropan sulfonic acid)-g-carboxymethyl cellulose/TiO2 (poly(AAm-co-AMPS)-g-CMC/TiO2) superabsorbent hydrogel composites were prepared by free-radical graft copolymerization in aqueous solution. Structural and surface morphology characterizations were conducted by using Fourier-transform infrared spectroscopy and scanning electron microscope analysis techniques. For modeling the equilibrium swelling capacity and fracture strength behaviors of hydrogels, the composition parameters (such as mole ratio of AMPS/AAm, wt% of CMC, and wt% of TiO2) was proposed by response surface method (RSM) Design Expert-10 software. Statistical parameters showed that the RSM model has good performance in modeling the swelling capacity and mechanic fracture strength behaviors of poly(AAm-co-AMPS)-g-CMC/TiO2 hydrogel composites. According to the RSM model results, the maximum swelling capacity and fracture strength values were calculated as 270.39 g water/g polymer and 159.23 kPa, respectively.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available