4.6 Article

Optimal distribution-preserving downsampling of large biomedical data sets (opdisDownsampling)

Journal

PLOS ONE
Volume 16, Issue 8, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0255838

Keywords

-

Funding

  1. Landesoffensive zur Entwicklung wissenschaftlichokonomischer Exzellenz (LOEWE), LOEWEZentrum fur Translationale Medizin und Pharmakologie

Ask authors/readers for more resources

Optimal distribution-preserving class-proportional downsampling yields data subsets that reflect the structure of the entire data better than those obtained with the standard method. By using distributional similarity as the only selection criterion, the proposed method does not in any way affect the results of a later planned analysis.
Motivation The size of today's biomedical data sets pushes computer equipment to its limits, even for seemingly standard analysis tasks such as data projection or clustering. Reducing large biomedical data by downsampling is therefore a common early step in data processing, often performed as random uniform class-proportional downsampling. In this report, we hypothesized that this can be optimized to obtain samples that better reflect the entire data set than those obtained using the current standard method. Results By repeating the random sampling and comparing the distribution of the drawn sample with the distribution of the original data, it was possible to establish a method for obtaining subsets of data that better reflect the entire data set than taking only the first randomly selected subsample, as is the current standard. Experiments on artificial and real biomedical data sets showed that the reconstruction of the remaining data from the original data set from the downsampled data improved significantly. This was observed with both principal component analysis and autoencoding neural networks. The fidelity was dependent on both the number of cases drawn from the original and the number of samples drawn. Conclusions Optimal distribution-preserving class-proportional downsampling yields data subsets that reflect the structure of the entire data better than those obtained with the standard method. By using distributional similarity as the only selection criterion, the proposed method does not in any way affect the results of a later planned analysis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available