4.6 Article

Delftia acidovorans secretes substances that inhibit the growth of Staphylococcus epidermidis through TCA cycle-triggered ROS production

Journal

PLOS ONE
Volume 16, Issue 7, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0253618

Keywords

-

Funding

  1. Japan Society for the Promotion of Science, JSPS [JP20K07208, JP16K08384, JP19K07176]

Ask authors/readers for more resources

The proportion of Staphylococcus aureus in the skin microbiome is associated with the severity of inflammation in atopic dermatitis, and the balance between Staphylococcus epidermidis and S. aureus is crucial for maintaining healthy skin. Heat-treated culture supernatant of Delftia acidovorans inhibits the growth of S. epidermidis by inducing the production of reactive oxygen species via the TCA cycle.
The proportion of Staphylococcus aureus in the skin microbiome is associated with the severity of inflammation in the skin disease atopic dermatitis. Staphylococcus epidermidis, a commensal skin bacterium, inhibits the growth of S. aureus in the skin. Therefore, the balance between S. epidermidis and S. aureus in the skin microbiome is important for maintaining healthy skin. In the present study, we demonstrated that the heat-treated culture supernatant of Delftia acidovorans, a member of the skin microbiome, inhibits the growth of S. epidermidis, but not that of S. aureus. Comprehensive gene expression analysis by RNA sequencing revealed that culture supernatant of D. acidovorans increased the expression of genes related to glycolysis and the tricarboxylic acid cycle (TCA) cycle in S. epidermidis. Malonate, an inhibitor of succinate dehydrogenase in the TCA cycle, suppressed the inhibitory effect of the heat-treated culture supernatant of D. acidovorans on the growth of S. epidermidis. Reactive oxygen species production in S. epidermidis was induced by the heat-treated culture supernatant of D. acidovorans and suppressed by malonate. Further, the inhibitory effect of the heat-treated culture supernatant of D. acidovorans on the growth of S. epidermidis was suppressed by N-acetyl-L-cysteine, a free radical scavenger. These findings suggest that heat-resistant substances secreted by D. acidovorans inhibit the growth of S. epidermidis by inducing the production of reactive oxygen species via the TCA cycle.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available