4.6 Article

Lipid profiling suggests species specificity and minimal seasonal variation in Pacific Green and Hawksbill Turtle plasma

Journal

PLOS ONE
Volume 16, Issue 7, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0253916

Keywords

-

Funding

  1. Department of Forestry and Natural Resources at Purdue University, West Lafayette, IN
  2. Leatherback Trust, Fort Wayne, IN
  3. Equipo Tora Carey, San Jose, CR
  4. USDA National Institute of Food and Agriculture, Hatch Project [1019737]
  5. Jack W. Schrey Distinguished Professorship funds

Ask authors/readers for more resources

This study applied multiple reaction monitoring (MRM)-profiling to explore lipid classes in sea turtle plasma samples and found that most lipids have consistent relative ion intensities between species and seasons, with some species-specific differences. The research also identified a phylogenetic component in the variability of lipid profiles and seasonal differences in certain lipid classes. Overall, more lipids had higher relative ion intensity in the upwelling season compared to the non-upwelling season, with more variability observed in hawksbill turtles than green turtles.
In this study, we applied multiple reaction monitoring (MRM)-profiling to explore the relative ion intensity of lipid classes in plasma samples from sea turtles in order to profile lipids relevant to sea turtle physiology and investigate how dynamic ocean environments affect these profiles. We collected plasma samples from foraging green (Chelonia mydas, n = 28) and hawksbill (Eretmochelys imbricata, n = 16) turtles live captured in North Pacific Costa Rica in 2017. From these samples, we identified 623 MRMs belonging to 10 lipid classes (sphingomyelin, phosphatidylcholine, free fatty acid, cholesteryl ester, phosphatidylserine, phosphatidylinositol, phosphatidylglycerol, phosphatidylethanolamine, ceramide, and triacylglyceride) and one metabolite group (acyl-carnitine) present in sea turtle plasma. The relative ion intensities of most lipids (80%) were consistent between species, across seasons, and were not correlated to body size or estimated sex. Of the differences we observed, the most pronounced was the differences in relative ion intensity between species. We identified 123 lipids that had species-specific relative ion intensities. While some of this variability is likely due to green and hawksbill turtles consuming different food items, we found indications of a phylogenetic component as well. Of these, we identified 47 lipids that varied by season, most belonging to the structural phospholipid classes. Overall, more lipids (n = 39) had higher relative ion intensity in the upwelling (colder) season compared to the non-upwelling season (n = 8). Further, we found more variability in hawksbill turtles than green turtles. Here, we provide the framework in which to apply future lipid profiling in the assessment of health, physiology, and behavior in endangered sea turtles.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available