4.6 Article

FAM9B serves as a novel meiosis-related protein localized in meiotic chromosome cores and is associated with human gametogenesis

Journal

PLOS ONE
Volume 16, Issue 9, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0257248

Keywords

-

Funding

  1. National Natural Science Foundation of China [8217060945, 81671513, 81200466]
  2. Beijing Natural Science Foundation [7172236]

Ask authors/readers for more resources

FAM9B is a novel meiosis-associated protein co-localized with SYCP3 and gamma H2AX, playing a potential role in SC formation and DNA recombination during meiosis.
Meiosis is a complex process involving the expression and interaction of numerous genes in a series of highly orchestrated molecular events. Fam9b localized in Xp22.3 has been found to be expressed in testes. However, FAM9B expression, localization, and its role in meiosis have not been previously reported. In this study, FAM9B expression was evaluated in the human testes and ovaries by RT-PCR, qPCR, and western blotting. FAM9B was found in the nuclei of primary spermatocytes in testes and specifically localized in the synaptonemal complex (SC) region of spermatocytes. FAM9B was also evident in the follicle cell nuclei and diffusely dispersed in the granular cell cytoplasm. FAM9B was partly co-localized with SYCP3, which is essential for both formation and maintenance of lateral SC elements. In addition, FAM9B had a similar distribution pattern and co-localization as gamma H2AX, which is a novel biomarker for DNA double-strand breaks during meiosis. All results indicate that FAM9B is a novel meiosis-associated protein that is co-localized with SYCP3 and gamma H2AX and may play an important role in SC formation and DNA recombination during meiosis. These findings offer a new perspective for understanding the molecular mechanisms involved in meiosis of human gametogenesis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available