4.7 Article

Structural insights into the allosteric site of Arabidopsis NADP-malic enzyme 2: role of the second sphere residues in the regulatory signal transmission

Journal

PLANT MOLECULAR BIOLOGY
Volume 107, Issue 1-2, Pages 37-48

Publisher

SPRINGER
DOI: 10.1007/s11103-021-01176-2

Keywords

Malic enzyme; Fumarate regulation; Structure-function

Funding

  1. CONICET
  2. National Agency for Promotion of Science and Technology
  3. Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior - Brasil (CAPES) [001]
  4. Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro (FAPERJ) [E-26/203.179/2016]

Ask authors/readers for more resources

In this study, the researchers characterized the structural determinants necessary for fumarate allosteric regulation of NADP-ME2 from Arabidopsis thaliana using molecular modeling, molecular docking, normal mode analysis, and mutagenesis. The results provide new insights for enzyme optimization by understanding the allosteric regulation mechanisms.
Key message NADP-ME2 from Arabidopsis thaliana exhibits a distinctive and complex regulation by fumarate, acting as an activator or an inhibitor according to substrate and effector concentrations. In this work, we used molecular modeling approach and site-directed mutagenesis to characterized the NADP-ME2 structural determinants necessary for allosteric regulation providing new insights for enzyme optimization. Structure-function studies contribute to deciphering how small modifications in the primary structure could introduce desirable characteristics into enzymes without affecting its overall functioning. Malic enzymes (ME) are ubiquitous and responsible for a wide variety of functions. The availability of a high number of ME crystal structures from different species facilitates comparisons between sequence and structure. Specifically, the structural determinants necessary for fumarate allosteric regulation of ME has been of particular interest. NADP-ME2 from Arabidopsis thaliana exhibits a distinctive and complex regulation by fumarate, acting as an activator or an inhibitor according to substrate and effector concentrations. However, the 3D structure for this enzyme is not yet reported. In this work, we characterized the NADP-ME2 allosteric site by structural modeling, molecular docking, normal mode analysis and mutagenesis. The regulatory site model and its docking analysis suggested that other C4 acids including malate, NADP-ME2 substrate, could also fit into fumarate's pocket. Besides, a non-conserved cluster of hydrophobic residues in the second sphere of the allosteric site was identified. The substitution of one of those residues, L62, by a less flexible residue as tryptophan, resulted in a complete loss of fumarate activation and a reduction of substrate affinities for the active site. In addition, normal mode analysis indicated that conformational changes leading to the activation could originate in the region surrounding L62, extending through the allosteric site till the active site. Finally, the results in this work contribute to the understanding of structural determinants necessary for allosteric regulation providing new insights for enzyme optimization. [GRAPHICS] .

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available