4.7 Article

The phenylpropanoid pathway inhibitor piperonylic acid induces broad-spectrum pest and disease resistance in plants

Journal

PLANT CELL AND ENVIRONMENT
Volume 44, Issue 9, Pages 3122-3139

Publisher

WILEY
DOI: 10.1111/pce.14119

Keywords

flavonoids; induced resistance; metabolomics; plant immunity; salicylic acid; tomato; transcriptomics

Categories

Funding

  1. Flemish government's Agency [HBC.2017.0574]

Ask authors/readers for more resources

In this study, transient perturbation of the phenylpropanoid pathway was shown to trigger systemic, broad-spectrum resistance in plants by reprogramming metabolism and inducing immune signaling pathways, highlighting the crucial regulatory role of this pathway in plant immunity.
Although many phenylpropanoid pathway-derived molecules act as physical and chemical barriers to pests and pathogens, comparatively little is known about their role in regulating plant immunity. To explore this research field, we transiently perturbed the phenylpropanoid pathway through application of the CINNAMIC ACID-4-HYDROXYLASE (C4H) inhibitor piperonylic acid (PA). Using bioassays involving diverse pests and pathogens, we show that transient C4H inhibition triggers systemic, broad-spectrum resistance in higher plants without affecting growth. PA treatment enhances tomato (Solanum lycopersicum) resistance in field and laboratory conditions, thereby illustrating the potential of phenylpropanoid pathway perturbation in crop protection. At the molecular level, transcriptome and metabolome analyses reveal that transient C4H inhibition in tomato reprograms phenylpropanoid and flavonoid metabolism, systemically induces immune signalling and pathogenesisrelated genes, and locally affects reactive oxygen species metabolism. Furthermore, C4H inhibition primes cell wall modification and phenolic compound accumulation in response to root-knot nematode infection. Although PA treatment induces local accumulation of the phytohormone salicylic acid, the PA resistance phenotype is preserved in tomato plants expressing the salicylic acid-degrading NahG construct. Together, our results demonstrate that transient phenylpropanoid pathway perturbation is a conserved inducer of plant resistance and thus highlight the crucial regulatory role of this pathway in plant immunity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available