4.7 Article

Strongly-interacting ultralight millicharged particles

Journal

PHYSICS LETTERS B
Volume 822, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.physletb.2021.136653

Keywords

-

Ask authors/readers for more resources

The study explores the implications of an ultra-light fermionic dark matter candidate carrying baryon number, with a focus on the formation of exotic states of matter and its impact on dark matter halos. The model of dark baryons based on a non-Abelian gauge group presents a unique solution to the core-cusp problem in collisionless cold dark matter. By utilizing dense quark matter equations of state, the research finds halo cores consistent with observations of dwarf galaxies, suggesting a potential resolution to longstanding astrophysical mysteries.
We consider the implications of an ultra-light fermionic dark matter candidate that carries baryon number. This naturally arises if dark matter has a small charge under standard model baryon number whilst having an asymmetry equal and opposite to that in the visible universe. A prototypical model is a theory of dark baryons of a non-Abelian gauge group, i.e., a dark Quantum Chromo-Dynamics (QCD). For sub-eV dark baryon masses, the inner region of dark matter halos is naturally at 'nuclear density', allowing for the formation of exotic states of matter, akin to neutron stars. The Tremaine-Gunn lower bound on the mass of fermionic dark matter, i.e., the dark baryons, is violated by the strong short-range self-interactions, cooling via emission of light dark pions, and the Cooper pairing of dark quarks that occurs at densities that are high relative to the (ultra-low) dark QCD scale. We develop the astrophysics of these STrongly-interacting Ultra-light Millicharged Particles (STUMPs) utilizing the equation of state of dense quark matter, and find halo cores consistent with observations of dwarf galaxies. These cores are prevented from core-collapse by pressure of the 'neutron star', which suggests ultra-light dark QCD as a resolution to core-cusp problem of collisionless cold dark matter. The model is distinguished from ultra-light bosonic dark matter through direct detection and collider signatures, as well as by phenomena associated with superconductivity, such as Andreev reflection and superconducting vortices. (C) 2021 The Author(s). Published by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available