4.4 Article

Sevoflurane Postconditioning Ameliorates Neuronal Migration Disorder Through Reelin/Dab1 and Improves Long-term Cognition in Neonatal Rats After Hypoxic-Ischemic Injury

Journal

NEUROTOXICITY RESEARCH
Volume 39, Issue 5, Pages 1524-1542

Publisher

SPRINGER
DOI: 10.1007/s12640-021-00377-3

Keywords

Sevoflurane postconditioning; Hippocampal dentate gyrus; Hypoxia-ischemia; Reelin; Long-term neurocognition

Categories

Funding

  1. National Nature Science Foundation of China [82071215, 81870838]
  2. Liaoning Province Distinguished Professor Support Program [XLYC1802096]
  3. Outstanding Scientific Fund of Shengjing Hospital [201708]
  4. Shenyang Clinical Medicine Research Center of Anesthesiology [20-204-4-44]

Ask authors/readers for more resources

SPC can repair hippocampal injury after HIE by promoting neural migration, potentially through inhibiting overactivated Reelin/Dab1 pathway.
Sevoflurane postconditioning (SPC) has been widely reported to attenuate brain injury after hypoxia-ischemia encephalopathy (HIE) by inhibiting neural necrosis and autophagy. Moreover, recent reports revealed that sevoflurane facilitated hippocampal reconstruction via regulating migration. Yet, it remains unclear whether the promotion of neural migration by SPC repairs the hippocampal injury after HIE. Here, we hypothesize that SPC exerts a neuroprotective effect by ameliorating neuronal migration disorder after HIE and regulating Reelin expression. Furthermore, the downstream Reelin/Dab1 pathway may be involved. The classical Rice-Vannucci model of hypoxia-ischemia was performed on postnatal day 7 rat pups, which was followed by SPC at 1 minimum alveolar concentration (MAC 2.5%) for 30 min. Piceatannol, causing Reelin aggregation in vivo, was used to detect whether Reelin/Dab1 was involved in the neuroprotection effect of SPC. Hippocampal-dependent learning ability tests were conducted to assess the long-term effects on locomotor activity and spatial learning ability. Our findings suggest that hypoxia-ischemia injury inhibited neurons migrated outward from the basal zone of dentate gyrus, disrupted cytoarchitecture of the dentate gyrus (DG), and led to long-term cognition deficits. However, SPC could relieve the restricted hippocampal neurons and repair the hippocampal-dependent memory function damaged after HIE by attenuating the overactivation of the Reelin/Dab1 pathway. These results demonstrate that SPC plays a pivotal role in ameliorating neuronal migration disorder and maintaining normal cytoarchitecture of the DG via inhibiting overactivated Reelin expression. This process may involve overactivated Reelin/Dab1 signaling pathway and spatial learning ability by regulating the Reelin expression which may associate with its neuroprotection.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available