4.5 Article

Effect of SARS-CoV-2 B.1.1.7 mutations on spike protein structure and function

Related references

Note: Only part of the references are listed.
Article Microbiology

Complete Mapping of Mutations to the SARS-CoV-2 Spike Receptor-Binding Domain that Escape Antibody Recognition

Allison J. Greaney et al.

Summary: Antibodies targeting the SARS-CoV-2 spike receptor-binding domain (RBD) are key in neutralizing antibody responses, and a deep mutational scanning method was used to assess the impact of all amino-acid mutations in the RBD on antibody binding with 10 human monoclonal antibodies. The study identified the clustered escape mutations in different surfaces of the RBD that correspond to structurally defined antibody epitopes, showing that even antibodies targeting the same surface can have distinct escape mutations.

CELL HOST & MICROBE (2021)

Article Biochemistry & Molecular Biology

A trimeric human angiotensin-converting enzyme 2 as an anti-SARS-CoV-2 agent

Tianshu Xiao et al.

Summary: This study introduces a trimeric ACE2 ectodomain variant engineered using a structure-based approach, which has a high binding affinity for the spike protein of SARS-CoV-2, preserved peptidase activity, and the ability to block angiotensin II receptor activation. The engineered ACE2 also shows potent inhibition of SARS-CoV-2 infection in cell culture, suggesting it may be a promising therapeutic agent for COVID-19.

NATURE STRUCTURAL & MOLECULAR BIOLOGY (2021)

Article Cell Biology

D614G Mutation Alters SARS-CoV-2 Spike Conformation and Enhances Protease Cleavage at the S1/S2 Junction

Sophie M-C Gobeil et al.

Summary: The study found that the mutation variant G614 of SARS-CoV-2 leads to significant changes in the protein structure, resulting in altered positioning ratio of RBD, which may have implications for vaccine design.

CELL REPORTS (2021)

Article Public, Environmental & Occupational Health

Emergence of SARS-CoV-2 B.1.1.7 Lineage — United States, December 29, 2020–January 12, 2021

Summer E. Galloway et al.

MMWR-MORBIDITY AND MORTALITY WEEKLY REPORT (2021)

Article Multidisciplinary Sciences

Conformational dynamics of SARS-CoV-2 trimeric spike glycoprotein in complex with receptor ACE2 revealed by cryo-EM

Cong Xu et al.

Summary: The recent global health emergency caused by SARS-CoV-2 outbreak is mediated by the interaction between the SARS-CoV-2 trimeric spike glycoprotein and the human ACE2 receptor. The SARS-CoV-2 S trimer is more sensitive to ACE2 receptor compared to SARS-CoV S trimer, potentially contributing to its superior infectivity. Research findings depict the mechanism of ACE2-induced conformational transitions in S trimer structure, aiding in the development of anti-SARS-CoV-2 vaccines and therapeutics.

SCIENCE ADVANCES (2021)

Article Multidisciplinary Sciences

Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7

Pengfei Wang et al.

Summary: The COVID-19 pandemic has had global repercussions, with promising vaccines and monoclonal antibody therapies. However, newly detected variants of SARS-CoV-2 present challenges to these treatment options.

NATURE (2021)

Article Multidisciplinary Sciences

The effect of the D614G substitution on the structure of the spike glycoprotein of SARS-CoV-2

Donald J. Benton et al.

Summary: Studies indicate that the G614 mutant spike adopts more open conformations, which may facilitate binding to the SARS-CoV-2 receptor ACE2 and the subsequent structural rearrangements required for viral membrane fusion.

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA (2021)

Article Multidisciplinary Sciences

Structural impact on SARS-CoV-2 spike protein by D614G substitution

Jun Zhang et al.

Summary: Substitution of aspartic acid (D) with glycine (G) at position 614 in the spike protein of SARS-CoV-2 enhances viral spread. Cryo-electron microscopy structures reveal that the G614 strain has increased infectivity compared to the D614 strain. These findings provide insights for vaccine development and understanding viral entry mechanisms.

SCIENCE (2021)

Article Biochemistry & Molecular Biology

Cryo-electron microscopy structures of the N501Y SARS-CoV-2 spike protein in complex with ACE2 and 2 potent neutralizing antibodies

Xing Zhu et al.

Summary: The UK variant of SARS-CoV-2 with the N501Y mutation shows increased infectivity due to tighter binding with the ACE2 receptor, but without significant structural changes. Important neutralization epitopes in the spike receptor binding domain are retained.

PLOS BIOLOGY (2021)

Article Multidisciplinary Sciences

Effect of natural mutations of SARS-CoV-2 on spike structure, conformation, and antigenicity

Sophie M-C Gobeil et al.

Summary: SARS-CoV-2 variants with multiple spike mutations have increased transmission and resistance to antibodies. Research showed that these variants have enhanced receptor binding and a preference for receptor binding domain up states. Different variants exhibit different mechanisms for resistance to neutralizing antibodies, which helps explain their transmission and resistance.

SCIENCE (2021)

Article Multidisciplinary Sciences

Structural basis for enhanced infectivity and immune evasion of SARS-CoV-2 variants

Yongfei Cai et al.

Summary: The study found that the B.1.1.7 variant has increased receptor binding affinity, while the B.1.351 variant has developed resistance to some neutralizing antibodies by reshaping antigenic surfaces on the spike protein.

SCIENCE (2021)

Article Multidisciplinary Sciences

Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans

Bas B. Oude Munnink et al.

Summary: Animal experiments have shown that various animals can be infected by SARS-CoV-2, with evidence of animal-to-human transmission within mink farms. Investigation into mink farm outbreaks revealed that the virus was initially introduced by humans and has since evolved, causing transmission between mink farms. Despite enhanced biosecurity measures and culling, transmission occurred between farms in three large clusters with unknown modes of transmission, resulting in a high percentage of infections among mink farm residents and employees.

SCIENCE (2021)

Article Multidisciplinary Sciences

Cryo-EM analysis of a feline coronavirus spike protein reveals a unique structure and camouflaging glycans

Tzu-Jing Yang et al.

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA (2020)

Article Multidisciplinary Sciences

Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2

Renhong Yan et al.

SCIENCE (2020)

Article Multidisciplinary Sciences

Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation

Daniel Wrapp et al.

SCIENCE (2020)

Article Biochemistry & Molecular Biology

Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein

Alexandra C. Walls et al.

Article Multidisciplinary Sciences

Cross-neutralization ofSARS-CoV-2 by a human monoclonal SARS-CoV antibody

Dora Pinto et al.

NATURE (2020)

Article Multidisciplinary Sciences

Structural basis of receptor recognition by SARS-CoV-2

Jian Shang et al.

NATURE (2020)

Article Biochemistry & Molecular Biology

Structural and Functional Analysis of the D614G SARS-CoV-2 Spike Protein Variant

Leonid Yurkovetskiy et al.

Article Multidisciplinary Sciences

Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike

Lihong Liu et al.

NATURE (2020)

Article Biochemistry & Molecular Biology

SARS-CoV-2 and bat RaTG13 spike glycoprotein structures inform on virus evolution and furin-cleavage effects

Antoni G. Wrobel et al.

NATURE STRUCTURAL & MOLECULAR BIOLOGY (2020)

Article Multidisciplinary Sciences

Engineering human ACE2 to optimize binding to the spike protein of SARS coronavirus 2

Kui K. Chan et al.

SCIENCE (2020)

Article Multidisciplinary Sciences

Structure-based design of prefusion-stabilized SARS-CoV-2 spikes

Ching-Lin Hsieh et al.

SCIENCE (2020)

Article Multidisciplinary Sciences

SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies

Christopher O. Barnes et al.

NATURE (2020)

Article Multidisciplinary Sciences

Ultrapotent human antibodies protect against SARS-CoV-2 challenge via multiple mechanisms

M. Alejandra Tortorici et al.

SCIENCE (2020)

Article Biochemistry & Molecular Biology

UCSF ChimeraX: Meeting modern challenges in visualization and analysis

Thomas D. Goddard et al.

PROTEIN SCIENCE (2018)

Article Biochemistry & Molecular Biology

SWISS-MODEL: homology modelling of protein structures and complexes

Andrew Waterhouse et al.

NUCLEIC ACIDS RESEARCH (2018)

Letter Biochemical Research Methods

MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy

Shawn Q. Zheng et al.

NATURE METHODS (2017)

Article Biochemical Research Methods

cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination

Ali Punjani et al.

NATURE METHODS (2017)

Article Biochemical Research Methods

Quantifying the local resolution of cryo-EMEM density maps

Alp Kucukelbir et al.

NATURE METHODS (2014)

Article Biochemical Research Methods

MolProbity: all-atom structure validation for macromolecular crystallography

Vincent B. Chen et al.

ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY (2010)

Article Biochemical Research Methods

Features and development of Coot

P. Emsley et al.

ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY (2010)

Article Biochemical Research Methods

PHENIX: a comprehensive Python-based system for macromolecular structure solution

Paul D. Adams et al.

ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY (2010)

Review Biochemistry & Molecular Biology

Inference of macromolecular assemblies from crystalline state

Evgeny Krissinel et al.

JOURNAL OF MOLECULAR BIOLOGY (2007)

Article Chemistry, Multidisciplinary

UCSF chimera - A visualization system for exploratory research and analysis

EF Pettersen et al.

JOURNAL OF COMPUTATIONAL CHEMISTRY (2004)