4.7 Review

SARS-CoV-2 variants, spike mutations and immune escape

Related references

Note: Only part of the references are listed.
Article Biochemistry & Molecular Biology

Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity

Erik Volz et al.

Summary: The study suggests a positive selection for the SARS-CoV-2 spike protein variant D614G in the UK, but no evidence of differences in COVID-19 mortality or clinical severity in patients infected with this variant. 614G is associated with higher viral load and younger age of patients compared to 614D.
Article Microbiology

Complete Mapping of Mutations to the SARS-CoV-2 Spike Receptor-Binding Domain that Escape Antibody Recognition

Allison J. Greaney et al.

Summary: Antibodies targeting the SARS-CoV-2 spike receptor-binding domain (RBD) are key in neutralizing antibody responses, and a deep mutational scanning method was used to assess the impact of all amino-acid mutations in the RBD on antibody binding with 10 human monoclonal antibodies. The study identified the clustered escape mutations in different surfaces of the RBD that correspond to structurally defined antibody epitopes, showing that even antibodies targeting the same surface can have distinct escape mutations.

CELL HOST & MICROBE (2021)

Article Microbiology

D614G Spike Mutation Increases SARS CoV-2 Susceptibility to Neutralization

Drew Weissman et al.

Summary: The D614G mutation in the spike protein of SARS-CoV-2 is not expected to hinder current vaccine development, as viruses with the G614 spike are more susceptible to neutralization, indicating that the mutation may not affect vaccine efficacy.

CELL HOST & MICROBE (2021)

Article Multidisciplinary Sciences

Prospective mapping of viral mutations that escape antibodies used to treat COVID-19

Tyler N. Starr et al.

Summary: Research has found that mutations in the receptor binding domain (RBD) of SARS-CoV-2 may potentially escape the action of the REGN-COV2 cocktail, providing important information for interpreting mutations observed during viral surveillance.

SCIENCE (2021)

Article Biochemistry & Molecular Biology

SARS-CoV-2 501Y.V2 variants lack higher infectivity but do have immune escape

Qianqian Li et al.

Summary: The 501Y.V2 variants of SARS-CoV-2 with multiple mutations are rapidly spreading from South Africa to other countries, showing reduced susceptibility to neutralizing antibodies and potential compromise of monoclonal antibodies and vaccines. Enhanced infectivity in murine ACE2-overexpressing cells suggests the possibility of transmission to mice.
Article Biochemistry & Molecular Biology

Circulating SARS-CoV-2 spike N439K variants maintain fitness while evading antibody-mediated immunity

Emma C. Thomson et al.

Summary: SARS-CoV-2 virus can mutate and evade immunity, with mutations like N439K conferring resistance against neutralizing monoclonal antibodies and enhancing binding affinity to hACE2 receptor. Despite similar in vitro replication fitness and clinical outcomes compared to wild type, N439K mutation highlights the importance of ongoing molecular surveillance for guiding vaccine and therapeutic development and usage.
Article Biochemistry & Molecular Biology

Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity

Wilfredo F. Garcia-Beltran et al.

Summary: New variants of SARS-CoV-2 show high resistance to vaccine neutralization, with some able to escape vaccine responses with just a few mutations, highlighting the importance of developing broadly protective measures against variants.
Article Microbiology

Identification of SARS-CoV-2 spike mutations that attenuate monoclonal and serum antibody neutralization

Zhuoming Liu et al.

Summary: The study found that antibodies targeting the SARS-CoV-2 spike protein have escape mutations, different monoclonal antibodies have unique resistance profiles, some mutants are resistant to multiple antibodies while some variants can escape neutralization by convalescent sera. Comparing antibody-mediated mutations with circulating SARS-CoV-2 sequences revealed substitutions that may weaken neutralizing immune responses in some individuals, warranting further investigation.

CELL HOST & MICROBE (2021)

Article Microbiology

Comprehensive mapping of mutations in the SARS-CoV-2 receptor-binding domain that affect recognition by polyclonal human plasma antibodies

Allison J. Greaney et al.

Summary: The evolution of SARS-CoV-2 may impact the recognition of the virus by human antibody-mediated immunity, with mutations affecting antibody binding varying significantly among individuals and within the same individual over time. Despite this variability, mutations that greatly reduce antibody binding usually occur at specific sites in the RBD, with E484 being the most crucial. These findings can inform surveillance efforts for SARS-CoV-2 evolution in the future.

CELL HOST & MICROBE (2021)

Article Immunology

S-Variant SARS-CoV-2 Lineage B1.1.7 Is Associated With Significantly Higher Viral Load in Samples Tested by TaqPath Polymerase Chain Reaction

Michael Kidd et al.

Summary: Analysis of recent test data shows that samples containing the SARS-CoV-2 variant B1.1.7 with mutation Delta 69/70 exhibit S gene target failure (SGTF) in ThermoFisher TaqPath RT-qPCR. Samples with SGTF profile are more likely to have higher viral loads, indicating higher infectivity and rapid spread of this variant.

JOURNAL OF INFECTIOUS DISEASES (2021)

Letter Virology

Genomic Characterization of a Novel SARS-CoV-2 Lineage from Rio de Janeiro, Brazil

Carolina M. Voloch et al.

JOURNAL OF VIROLOGY (2021)

Article Multidisciplinary Sciences

Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccine-elicited antibodies

Dami A. Collier et al.

Summary: The B.1.1.7 variant of SARS-CoV-2 exhibited reduced neutralization by vaccines and antibodies from recovered COVID-19 patients, with a more substantial loss seen when introducing the E484K mutation. This mutation poses a threat to the efficacy of the BNT162b2 vaccine.

NATURE (2021)

Article Multidisciplinary Sciences

mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants

Zijun Wang et al.

Summary: Volunteers who received the Moderna or Pfizer-BioNTech vaccine showed high levels of antibodies and memory B cell responses against SARS-CoV-2, with activity similar to individuals who had recovered from natural infection. However, their efficacy against specific SARS-CoV-2 variants was reduced, indicating a potential need for periodic updates to mRNA vaccines to maintain clinical efficacy.

NATURE (2021)

Article Multidisciplinary Sciences

SARS-CoV-2 evolution during treatment of chronic infection

Steven A. Kemp et al.

Summary: Chronic infection with SARS-CoV-2 can lead to viral evolution and increased resistance to neutralizing antibodies in immunosuppressed individuals treated with convalescent plasma. During convalescent plasma therapy, there were significant shifts in the viral population structure and sensitivity, suggesting strong selection pressure on the virus during treatment.

NATURE (2021)

Article Biochemistry & Molecular Biology

SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma

Constantinos Kurt Wibmer et al.

Summary: The SARS-CoV-2 virus in the B.1.351 variant discovered in South Africa can evade neutralization by most antibodies when expressed, but does not affect binding by convalescent plasma. This suggests the potential for reinfection with antigenically distinct variants and predicts reduced efficacy of spike-based vaccines.

NATURE MEDICINE (2021)

Article Biochemistry & Molecular Biology

Neutralization of SARS-CoV-2 spike 69/70 deletion, E484K and N501Y variants by BNT162b2 vaccine-elicited sera

Xuping Xie et al.

Summary: The study found that human sera from recipients of the BNT162b2 vaccine can neutralize SARS-CoV-2 viruses containing key spike mutations from the newly emerged UK and SA variants.

NATURE MEDICINE (2021)

Article Multidisciplinary Sciences

Recurrent deletions in the SARS-CoV-2 spike glycoprotein drive antibody escape

Kevin R. McCarthy et al.

Summary: The translation above discusses zoonotic pandemics caused by animal viruses spilling over into highly susceptible human populations, specifically focusing on the evolution of coronaviruses in human hosts and the impact of recurrent deletions in the spike glycoprotein on antibody epitopes. These studies help understand the antigenic evolution and adaptive evolution of SARS-CoV-2.

SCIENCE (2021)

News Item Medicine, General & Internal

Covid-19: The E484K mutation and the risks it poses

Jacqui Wise

BMJ-BRITISH MEDICAL JOURNAL (2021)

News Item Medicine, General & Internal

Covid-19: Novavax vaccine efficacy is 86% against UK variant and 60% against South African variant

Elisabeth Mahase

BMJ-BRITISH MEDICAL JOURNAL (2021)

News Item Medicine, General & Internal

Covid-19: Where are we on vaccines and variants?

Elisabeth Mahase

BMJ-BRITISH MEDICAL JOURNAL (2021)

Article Biochemistry & Molecular Biology

Neutralizing and protective human monoclonal antibodies recognizing the N-terminal domain of the SARS-CoV-2 spike protein

Naveenchandra Suryadevara et al.

Summary: The study found that a subset of human monoclonal antibodies derived from convalescent SARS-CoV-2 patients possess neutralizing activity, with two antibodies capable of inhibiting infection. Mechanistic studies revealed these antibodies neutralize in part by inhibiting post-attachment steps in the infection cycle.
Article Biochemistry & Molecular Biology

N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2

Matthew McCallum et al.

Summary: The study identifies 41 human monoclonal antibodies that recognize the N-terminal domain of the SARS-CoV-2 spike protein and exhibit strong neutralizing activity. These antibodies inhibit cell-to-cell fusion, activate effector functions, and protect animals from virus challenge, highlighting the importance of NTD-specific neutralizing antibodies for protective immunity and vaccine development. Several SARS-CoV-2 variants with mutations in the NTD supersite suggest ongoing selective pressure on the virus.
Article Medicine, General & Internal

Efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 variant of concern 202012/01 (B.1.1.7): an exploratory analysis of a randomised controlled trial

Katherine R. W. Emary et al.

Summary: A post-hoc analysis was conducted on the efficacy of the ChAdOx1 nCoV-19 vaccine against the B.1.1.7 variant of SARS-CoV-2 in the UK. The vaccine showed reduced neutralisation activity against the B.1.1.7 variant in vitro, but still demonstrated efficacy against the B.1.1.7 variant of the virus.

LANCET (2021)

Article Multidisciplinary Sciences

Escape of SARS-CoV-2 501Y.V2 from neutralization by convalescent plasma

Sandile Cele et al.

Summary: The study compared the neutralization of non-VOC and 501Y.V2 VOC variants using plasma from COVID-19 patients in South Africa. It found that plasma from individuals infected during the first wave effectively neutralized the first-wave virus variant, while plasma from those infected in the second wave effectively neutralized the 501Y.V2 variant.

NATURE (2021)

Article Medicine, General & Internal

Efficacy of the ChAdOx1 nCoV-19 Covid-19 Vaccine against the B.1.351 Variant

S. A. Madhi et al.

Summary: The ChAdOx1 nCoV-19 vaccine did not provide significant protection against mild-to-moderate Covid-19 caused by the B.1.351 variant, with an efficacy of 10.4%. The incidence of serious adverse events was balanced between the vaccine and placebo groups.

NEW ENGLAND JOURNAL OF MEDICINE (2021)

Article Multidisciplinary Sciences

Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil

Nuno R. Faria et al.

Summary: A new variant of concern, P.1, with 17 mutations including three spike protein mutations associated with increased binding to human ACE2 receptors, emerged in Manaus, Brazil between November 2020 and January 2021. Molecular analysis suggests P.1 may be 1.7- to 2.4-fold more transmissible and that previous infection may provide 54 to 79% protection against P.1 infection compared to other lineages. Enhanced global genomic surveillance of such variants is crucial for pandemic response.

SCIENCE (2021)

Review Immunology

Viral targets for vaccines against COVID-19

Lianpan Dai et al.

Summary: The urgent need for vaccines to control the COVID-19 pandemic has led to the rapid development of multiple vaccine candidates, with some showing positive results in late-stage clinical trials. This article discusses the viral elements used in these candidates, the reasons why they are good targets for the immune system, and their implications for protective immunity. Dai and Gao highlight the importance of selecting the right viral targets in vaccine development to ensure an effective immune response and the overall safety and efficacy of the vaccine.

NATURE REVIEWS IMMUNOLOGY (2021)

Article Multidisciplinary Sciences

Site-specific glycan analysis of the SARS-CoV-2 spike

Yasunori Watanabe et al.

SCIENCE (2020)

Article Biochemistry & Molecular Biology

A Multibasic Cleavage Site in the Spike Protein of SARS-CoV-2 Is Essential for Infection of Human Lung Cells

Markus Hoffmann et al.

MOLECULAR CELL (2020)

Article Biochemistry & Molecular Biology

The Impact of Mutations in SARS-CoV-2 Spike on Viral Infectivity and Antigenicity

Qianqian Li et al.

Article Microbiology

A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology

Andrew Rambaut et al.

NATURE MICROBIOLOGY (2020)

Article Biochemistry & Molecular Biology

Structural and Functional Analysis of the D614G SARS-CoV-2 Spike Protein Variant

Leonid Yurkovetskiy et al.

Article Multidisciplinary Sciences

Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike

Lihong Liu et al.

NATURE (2020)

Article Biochemistry & Molecular Biology

SARS-CoV-2 and bat RaTG13 spike glycoprotein structures inform on virus evolution and furin-cleavage effects

Antoni G. Wrobel et al.

NATURE STRUCTURAL & MOLECULAR BIOLOGY (2020)

Article Multidisciplinary Sciences

Receptor binding and priming of the spike protein of SARS-CoV-2 for membrane fusion

Donald J. Benton et al.

NATURE (2020)

Article Multidisciplinary Sciences

SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies

Christopher O. Barnes et al.

NATURE (2020)

Article Chemistry, Multidisciplinary

Beyond Shielding: The Roles of Glycans in the SARS-CoV-2 Spike Protein

Lorenzo Casalino et al.

ACS CENTRAL SCIENCE (2020)

Article Virology

Temporal signal and the phylodynamic threshold of SARS-CoV-2

Sebastian Duchene et al.

VIRUS EVOLUTION (2020)

Letter Medicine, General & Internal

Persistence and Evolution of SARS-CoV-2 in an Immunocompromised Host

Bina Choi et al.

NEW ENGLAND JOURNAL OF MEDICINE (2020)

Article Multidisciplinary Sciences

SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo

Yixuan J. Hou et al.

SCIENCE (2020)

Article Virology

No evidence for distinct types in the evolution of SARS-CoV-2

Oscar A. MacLean et al.

VIRUS EVOLUTION (2020)

Article Biochemistry & Molecular Biology

Neutral Theory and Rapidly Evolving Viral Pathogens

Simon D. W. Frost et al.

MOLECULAR BIOLOGY AND EVOLUTION (2018)

Review Biochemistry & Molecular Biology

Predictive Modeling of Influenza Shows the Promise of Applied Evolutionary Biology

Dylan H. Morris et al.

TRENDS IN MICROBIOLOGY (2018)

Article Multidisciplinary Sciences

Fitness costs limit influenza A virus hemagglutinin glycosylation as an immune evasion strategy

Suman R. Das et al.

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA (2011)

Article Multidisciplinary Sciences

Hemagglutinin Receptor Binding Avidity Drives Influenza A Virus Antigenic Drift

Scott E. Hensley et al.

SCIENCE (2009)