4.8 Review

Porous materials for carbon dioxide separations

Journal

NATURE MATERIALS
Volume 20, Issue 8, Pages 1060-1072

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41563-021-01054-8

Keywords

-

Ask authors/readers for more resources

Global investment in counteracting climate change has generated interest in carbon capture and sequestration (CCS) as an emissions mitigation technology. Porous materials can adsorb large quantities of gas, making them a promising solution for CO2 capture and decarbonization efforts.
Global investment in counteracting climate change has galvanized increasing interest in carbon capture and sequestration (CCS) as a versatile emissions mitigation technology. As decarbonization efforts accelerate, CCS can target the emissions of large point-source emitters, such as coal- or natural gas-fired power plants, while also supporting the production of renewable or low-carbon fuels. Furthermore, CCS can enable decarbonization of difficult-to-abate industrial processes and can support net CO2 removal from the atmosphere through bioenergy coupled with CCS or direct air capture. Here we review the development of porous materials as next-generation sorbents for CO2 capture applications. We focus on stream- and sector-specific challenges while highlighting case studies within the context of the rapidly shifting energy landscape. We conclude with a discussion of key needs from the materials community to expand deployment of carbon capture technologies. Porous materials can selectively and reversibly adsorb large quantities of gas. This Review highlights progress made in using this class of materials for CO2 capture processes and discusses key gaps that the materials community can address to accelerate greater adoption of adsorptive carbon capture technologies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available