4.8 Article

Large subglacial source of mercury from the southwestern margin of the Greenland Ice Sheet

Journal

NATURE GEOSCIENCE
Volume 14, Issue 7, Pages 496-+

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41561-021-00753-w

Keywords

-

Funding

  1. European Commission Horizon 2020 Marie Sklodowska-Curie Actions fellowship ICICLES [793962]
  2. UK NERC standard grant [NE/I008845/1]
  3. Leverhulme Trust Research Grant [RPG-2016-439]
  4. Royal Society Wolfson Merit Award
  5. Czech Science Foundation grants (GACR) [15-17346Y, 18-12630S]
  6. European Research Council grant ICY-LAB [678371]
  7. Royal Society Enhancement Award [RGF\EA\181036]
  8. research programme VENI (NWO) [0.16.Veni.192.150]
  9. Charles University Research Centre program [204069]
  10. NSF [DMR-1644779]
  11. Marie Curie Actions (MSCA) [793962] Funding Source: Marie Curie Actions (MSCA)
  12. European Research Council (ERC) [678371] Funding Source: European Research Council (ERC)

Ask authors/readers for more resources

The Greenland Ice Sheet contributes significantly to the global riverine flux of mercury, with extremely high concentrations of dissolved mercury in meltwaters and exports to downstream fjords. The geological source of mercury at the ice sheet bed results in concentrations exceeding those in surface snow and ice. Understanding mercury dynamics in ice sheet runoff is crucial for Arctic ecosystems under global warming.
The Greenland Ice Sheet is currently not accounted for in Arctic mercury budgets, despite large and increasing annual runoff to the ocean and the socio-economic concerns of high mercury levels in Arctic organisms. Here we present concentrations of mercury in meltwaters from three glacial catchments on the southwestern margin of the Greenland Ice Sheet and evaluate the export of mercury to downstream fjords based on samples collected during summer ablation seasons. We show that concentrations of dissolved mercury are among the highest recorded in natural waters and mercury yields from these glacial catchments (521-3,300 mmol km(-2) year(-1)) are two orders of magnitude higher than from Arctic rivers (4-20 mmol km(-2) year(-1)). Fluxes of dissolved mercury from the southwestern region of Greenland are estimated to be globally significant (15.4-212 kmol year(-1)), accounting for about 10% of the estimated global riverine flux, and include export of bioaccumulating methylmercury (0.31-1.97 kmol year(-1)). High dissolved mercury concentrations (similar to 20 pM inorganic mercury and similar to 2 pM methylmercury) were found to persist across salinity gradients of fjords. Mean particulate mercury concentrations were among the highest recorded in the literature (similar to 51,000 pM), and dissolved mercury concentrations in runoff exceed reported surface snow and ice values. These results suggest a geological source of mercury at the ice sheet bed. The high concentrations of mercury and its large export to the downstream fjords have important implications for Arctic ecosystems, highlighting an urgent need to better understand mercury dynamics in ice sheet runoff under global warming.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available