4.8 Review

Exploring tissue architecture using spatial transcriptomics

Journal

NATURE
Volume 596, Issue 7871, Pages 211-220

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41586-021-03634-9

Keywords

-

Ask authors/readers for more resources

Spatial transcriptomic technologies have revolutionized the field of biological research by systematically measuring gene expression levels throughout tissue space. In addition to generating biological insights, these technologies can be used for exploratory data analysis, hypothesis testing, and integration with other data modalities, providing a framework for understanding tissue organization.
Deciphering the principles and mechanisms by which gene activity orchestrates complex cellular arrangements in multicellular organisms has far-reaching implications for research in the life sciences. Recent technological advances in next-generation sequencing- and imaging-based approaches have established the power of spatial transcriptomics to measure expression levels of all or most genes systematically throughout tissue space, and have been adopted to generate biological insights in neuroscience, development and plant biology as well as to investigate a range of disease contexts, including cancer. Similar to datasets made possible by genomic sequencing and population health surveys, the large-scale atlases generated by this technology lend themselves to exploratory data analysis for hypothesis generation. Here we review spatial transcriptomic technologies and describe the repertoire of operations available for paths of analysis of the resulting data. Spatial transcriptomics can also be deployed for hypothesis testing using experimental designs that compare time points or conditions-including genetic or environmental perturbations. Finally, spatial transcriptomic data are naturally amenable to integration with other data modalities, providing an expandable framework for insight into tissue organization. This review describes the state of spatial transcriptomics technologies and analysis tools that are being used to generate biological insights in diverse areas of biology.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available