4.6 Review

Issues currently complicating the risk assessment of synthetic amorphous silica (SAS) nanoparticles after oral exposure

Journal

NANOTOXICOLOGY
Volume 15, Issue 7, Pages 905-933

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/17435390.2021.1931724

Keywords

SiO2; risk assessment; toxicology; internal organ concentration; food additive E 551

Ask authors/readers for more resources

Recent studies on the toxicity of synthetic amorphous silica (SAS) show inconsistent results in terms of toxicity and silicon concentrations in tissues. Risk assessment of SAS in food is hindered by these inconsistencies, highlighting the need for further research to address these issues.
Synthetic amorphous silica (SAS) is applied in food products as food additive E 551. It consists of constituent amorphous silicon dioxide (SiO2) nanoparticles that form aggregates and agglomerates. We reviewed recent oral toxicity studies with SAS. Some of those report tissue concentrations of silicon (Si). The results of those studies were compared with recently determined tissue concentrations of Si (and Si-particles) in human postmortem tissues. We noticed inconsistent results of the various toxicity studies regarding toxicity and reported tissue concentrations, which hamper the risk assessment of SAS. A broad range of Si concentrations is reported in control animals in toxicity studies. The Si concentrations found in human postmortem tissues fall within this range. On the other hand, the mean concentration found in human liver is higher than the reported concentrations causing liver effects in some animal toxicity studies after oral exposure to SAS. Also higher liver concentrations are observed in other, negative animal studies. Those inconsistencies could be caused by the presence of other Si-containing chemical substances or particles (which potentially also includes background SAS) and/or different sample preparation and analytical techniques that were used. Other factors which could explain the inconsistencies in outcome between the toxicity studies are the distinct SAS used and different dosing regimes, such as way of administration (dietary, via drinking water, oral gavage), dispersion of SAS and dose. More research is needed to address these issues and to perform a proper risk assessment for SAS in food. The current review will help to progress research on the toxicity of SAS and the associated risk assessment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available