4.8 Article

Fast and highly reversible Na+ intercalation/extraction in Zn/Mg dual-doped P2-Na0.67MnO2 cathode material for high-performance Na-ion batteries

Journal

NANO RESEARCH
Volume 14, Issue 10, Pages 3531-3537

Publisher

TSINGHUA UNIV PRESS
DOI: 10.1007/s12274-021-3715-2

Keywords

Na-ion batteries; cathode materials; co-doping; Na-ion diffusion; structural stability

Funding

  1. National Natural Science Foundation of China (NSFC) [91834301, 91534102, 21808046]
  2. Anhui Provincial Science and Technology Department Foundation [201903a05020021]

Ask authors/readers for more resources

The Zn/Mg dual-doped P2-Na0.67MnO2 with lower Mn3+/Mn4+ ratio and higher lattice O content shows improved structural stability and enhanced ion diffusion, leading to high rate performance and decent cycling stability. This co-doping strategy provides a promising avenue for further enhancing the performance of layered Na-ion batteries cathode materials.
P2-type layered Na0.67MnO2 has been considered to be a promising candidate cathode material for sodium ion batteries. Nevertheless, the undesired phase transitions during operation and the large Na+ radius induced sluggish ion diffusion remain the stumbling blocks to realize its high performance. Herein, we propose a Zn/Mg co-doping strategy, which is proved to have bifunctional effects. First, relative to the pristine P2-Na0.67MnO2 and the single-ion (Zn/Mg) doped samples, the Zn/Mg dual-doped P2-Na0.67MnO2 demonstrates a lower Mn3+/Mn4+ ratio and a higher lattice O content, which facilitate the structural stability of the cathode material. More intriguingly, the Zn/Mg co-doping gives rise to enlarged interplanar spacing, which provides spacious ion diffusion channels for fast Na+ intercalation/extraction. As a result, the Zn/Mg dual-doped sample exhibits a high Na+ diffusion coefficient and a solid-solution reaction during charge/discharge, with a cell volume change determined to be only 0.55%. Taking advantages of the above favorable features, the Zn/Mg dual-doped P2-Na0.67MnO2 demonstrates a high rate performance with 67.2 mAh center dot g(-1) delivered at 10 C and a decent cycling stability with a capacity retention of 93.8% achieved at 1 C after 100 cycles. This work introduces the Zn/Mg co-doping strategy to simultaneously improve the cycling stability and rate capability of P2-Na0.67MnO2, which may offer a promising avenue for further performance enhancement of the layered Na-ion batteries cathode materials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available