4.7 Article

Limited scope for plasticity to increase upper thermal limits

Journal

FUNCTIONAL ECOLOGY
Volume 30, Issue 12, Pages 1947-1956

Publisher

WILEY
DOI: 10.1111/1365-2435.12687

Keywords

acclimation; climate change; CTmax; hardening; heat; reaction norm; thermal tolerance

Categories

Funding

  1. Australian Research Council
  2. Commonwealth Environment Research Facility
  3. Science and Industry Endowment Fund
  4. Monash University

Ask authors/readers for more resources

1. Increases in average temperature and the frequency of extreme temperature events are likely to pose a major risk to species already close to their upper physiological thermal limits. The extent to which thermal phenotypic plasticity can buffer these changes and whether plasticity is constrained by basal tolerance levels remains unknown. 2. We examined the effect of developmental temperature under both constant and fluctuating thermal regimes (developmental acclimation), as well as short-term heat hardening, on upper thermal limits (CTmax) in a tropical and temperate population of Drosophila melanogaster. 3. We found evidence for thermal plasticity in response to both developmental acclimation and hardening treatments; CTmax increased at warmer developmental temperatures and with a prior heat hardening treatment. However, hardening and acclimation responses were small, improving CTmax by a maximum of 1.01 degrees C. These results imply that overheating risk will only be minimally reduced by plasticity. 4. We observed significant associations between developmental temperature and both basal CTmax and hardening capacity (a measure of the extent of the plastic response). Basal CTmax increased, while hardening capacity decreased, with increasing developmental acclimation temperature. This indicates that increases in basal heat resistance at warmer temperatures may come at the cost of a reduced capacity to harden. 5. While plasticity in CTmax is evident in both populations of D. melanogaster we studied, plastic increases in upper thermal limits, particularly at warmer temperatures, may not be sufficient to keep pace with temperature increases predicted under climate change.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available