4.6 Article

Deep learning-based meta-classifier approach for COVID-19 classification using CT scan and chest X-ray images

Journal

MULTIMEDIA SYSTEMS
Volume 28, Issue 4, Pages 1401-1415

Publisher

SPRINGER
DOI: 10.1007/s00530-021-00826-1

Keywords

COVID-19; CT scan; Chest X-rays; Computer-aided diagnosis; Transfer learning; Deep learning; Meta-classifier; Stacked classifier; Feature fusion

Ask authors/readers for more resources

This study proposes a new method for COVID-19 classification using pre-trained models and deep learning, which involves feature extraction, dimensionality reduction, feature fusion, and stacked ensemble meta-classifier. The method shows better performance than existing methods and can be used for point-of-care diagnosis by healthcare professionals.
Literature survey shows that convolutional neural network (CNN)-based pretrained models have been largely used for CoronaVirus Disease 2019 (COVID-19) classification using chest X-ray (CXR) and computed tomography (CT) datasets. However, most of the methods have used a smaller number of data samples for both CT and CXR datasets for training, validation, and testing. As a result, the model might have shown good performance during testing, but this type of model will not be more effective on unseen COVID-19 data samples. Generalization is an important term to be considered while designing a classifier that can perform well on completely unseen datasets. Here, this work proposes a large-scale learning with stacked ensemble meta-classifier and deep learning-based feature fusion approach for COVID-19 classification. The features from the penultimate layer (global average pooling) of EfficientNet-based pretrained models were extracted and the dimensionality of the extracted features reduced using kernel principal component analysis (PCA). Next, a feature fusion approach was employed to merge the features of various extracted features. Finally, a stacked ensemble meta-classifier-based approach was used for classification. It is a two-stage approach. In the first stage, random forest and support vector machine (SVM) were applied for prediction, then aggregated and fed into the second stage. The second stage includes logistic regression classifier that classifies the data sample of CT and CXR into either COVID-19 or Non-COVID-19. The proposed model was tested using large CT and CXR datasets, which are publicly available. The performance of the proposed model was compared with various existing CNN-based pretrained models. The proposed model outperformed the existing methods and can be used as a tool for point-of-care diagnosis by healthcare professionals.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available