4.6 Article

Molecular Modifications and Control of Processes to Facilitate the Synergistic Degradation of Polybrominated Diphenyl Ethers in Soil by Plants and Microorganisms Based on Queuing Scoring Method

Journal

MOLECULES
Volume 26, Issue 13, Pages -

Publisher

MDPI
DOI: 10.3390/molecules26133911

Keywords

polybrominated diphenyl ethers (PBDEs); molecular modification; synergistic degradation; molecular docking; molecular dynamics

Ask authors/readers for more resources

The study used a combination of modification and regulation to control PBDE degradation by plants and microorganisms, finding that adding lipophilic groups through modification can enhance degradation efficiency. Molecular docking methods and 3D-QSAR models were employed to design PBDE derivatives for improved degradation, with optimal regulation achieved through supplying an appropriate amount of carbon dioxide.
In this paper, a combination of modification of the source and regulation of the process was used to control the degradation of PBDEs by plants and microorganisms. First, the key proteins that can degrade PBDEs in plants and microorganisms were searched in the PDB (Protein Data Bank), and a molecular docking method was used to characterize the binding ability of PBDEs to two key proteins. Next, the synergistic binding ability of PBDEs to the two key proteins was evaluated based on the queuing integral method. Based on this, three groups of three-dimensional quantitative structure-activity relationship (3D-QSAR) models of plant-microbial synergistic degradation were constructed. A total of 30 PBDE derivatives were designed using BDE-3 as the template molecule. Among them, the effect on the synergistic degradation of six PBDE derivatives, including BDE-3-4, was significantly improved (increased by more than 20%) and the environment-friendly and functional evaluation parameters were improved. Subsequently, studies on the synergistic degradation of PBDEs and their derivatives by plants and microorganisms, based on the molecular docking method, found that the addition of lipophilic groups by modification is beneficial to enhance the efficiency of synergistic degradation of PBDEs by plants and microorganisms. Further, while docking PBDEs, the number of amino acids was increased and the binding bond length was decreased compared to the template molecules, i.e., PBDE derivatives could be naturally degraded more efficiently. Finally, molecular dynamics simulation by the Taguchi orthogonal experiment and a full factorial experimental design were used to simulate the effects of various regulatory schemes on the synergistic degradation of PBDEs by plants and microorganisms. It was found that optimal regulation occurred when the appropriate amount of carbon dioxide was supplied to the plant and microbial systems. This paper aims to provide theoretical support for enhancing the synergistic degradation of PBDEs by plants and microorganisms in e-waste dismantling sites and their surrounding polluted areas, as well as, realize the research and development of green alternatives to PBDE flame retardants.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available